R. Ghosh, Kishor S. Trivedi, V. Naik, Dong Seong Kim
{"title":"基础设施即服务云的端到端性能分析:一种交互随机模型方法","authors":"R. Ghosh, Kishor S. Trivedi, V. Naik, Dong Seong Kim","doi":"10.1109/PRDC.2010.30","DOIUrl":null,"url":null,"abstract":"Handling diverse client demands and managing unexpected failures without degrading performance are two key promises of a cloud delivered service. However, evaluation of a cloud service quality becomes difficult as the scale and complexity of a cloud system increases. In a cloud environment, service request from a user goes through a variety of provider specific processing steps from the instant it is submitted until the service is fully delivered. Measurement-based evaluation of cloud service quality is expensive especially if many configurations, workload scenarios, and management methods are to be analyzed. To overcome these difficulties, in this paper we propose a general analytic model based approach for an end-to-end perform ability analysis of a cloud service. We illustrate our approach using Infrastructure-as-a-Service (IaaS) cloud, where service availability and provisioning response delays are two key QoS metrics. A novelty of our approach is in reducing the complexity of analysis by dividing the overall model into sub-models and then obtaining the overall solution by iteration over individual sub-model solutions. In contrast to a single one-level monolithic model, our approach yields a high fidelity model that is tractable and scalable. Our approach and underlying models can be readily extended to other types of cloud services and are applicable to public, private and hybrid clouds.","PeriodicalId":382974,"journal":{"name":"2010 IEEE 16th Pacific Rim International Symposium on Dependable Computing","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"127","resultStr":"{\"title\":\"End-to-End Performability Analysis for Infrastructure-as-a-Service Cloud: An Interacting Stochastic Models Approach\",\"authors\":\"R. Ghosh, Kishor S. Trivedi, V. Naik, Dong Seong Kim\",\"doi\":\"10.1109/PRDC.2010.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Handling diverse client demands and managing unexpected failures without degrading performance are two key promises of a cloud delivered service. However, evaluation of a cloud service quality becomes difficult as the scale and complexity of a cloud system increases. In a cloud environment, service request from a user goes through a variety of provider specific processing steps from the instant it is submitted until the service is fully delivered. Measurement-based evaluation of cloud service quality is expensive especially if many configurations, workload scenarios, and management methods are to be analyzed. To overcome these difficulties, in this paper we propose a general analytic model based approach for an end-to-end perform ability analysis of a cloud service. We illustrate our approach using Infrastructure-as-a-Service (IaaS) cloud, where service availability and provisioning response delays are two key QoS metrics. A novelty of our approach is in reducing the complexity of analysis by dividing the overall model into sub-models and then obtaining the overall solution by iteration over individual sub-model solutions. In contrast to a single one-level monolithic model, our approach yields a high fidelity model that is tractable and scalable. Our approach and underlying models can be readily extended to other types of cloud services and are applicable to public, private and hybrid clouds.\",\"PeriodicalId\":382974,\"journal\":{\"name\":\"2010 IEEE 16th Pacific Rim International Symposium on Dependable Computing\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"127\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 16th Pacific Rim International Symposium on Dependable Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRDC.2010.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 16th Pacific Rim International Symposium on Dependable Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRDC.2010.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
End-to-End Performability Analysis for Infrastructure-as-a-Service Cloud: An Interacting Stochastic Models Approach
Handling diverse client demands and managing unexpected failures without degrading performance are two key promises of a cloud delivered service. However, evaluation of a cloud service quality becomes difficult as the scale and complexity of a cloud system increases. In a cloud environment, service request from a user goes through a variety of provider specific processing steps from the instant it is submitted until the service is fully delivered. Measurement-based evaluation of cloud service quality is expensive especially if many configurations, workload scenarios, and management methods are to be analyzed. To overcome these difficulties, in this paper we propose a general analytic model based approach for an end-to-end perform ability analysis of a cloud service. We illustrate our approach using Infrastructure-as-a-Service (IaaS) cloud, where service availability and provisioning response delays are two key QoS metrics. A novelty of our approach is in reducing the complexity of analysis by dividing the overall model into sub-models and then obtaining the overall solution by iteration over individual sub-model solutions. In contrast to a single one-level monolithic model, our approach yields a high fidelity model that is tractable and scalable. Our approach and underlying models can be readily extended to other types of cloud services and are applicable to public, private and hybrid clouds.