改进Leslie-Gower捕食-捕食模型的Hopf分岔和图灵不稳定性

Yan Meng, Guangwu Wen, L. Min
{"title":"改进Leslie-Gower捕食-捕食模型的Hopf分岔和图灵不稳定性","authors":"Yan Meng, Guangwu Wen, L. Min","doi":"10.1109/ISB.2013.6623798","DOIUrl":null,"url":null,"abstract":"In this paper, we study a modified Leslie-Gower prey-predator model in the presence of nonlinear harvesting in prey subject to the Neumann boundary condition. Our results reveal the conditions on the parameters so that the periodic solution exist surrounding the interior equilibrium. Furthermore, the direction of Hopf bifurcation and the stability of bifurcated periodic solutions are investigated. For the model with the Neumann boundary condition, Turing instability of the interior equilibrium solution is studied. In particular, Turing instability region regarding the parameters is established. Numerical simulations are carried out to demonstrate the results obtained.","PeriodicalId":151775,"journal":{"name":"2013 7th International Conference on Systems Biology (ISB)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hopf bifurcation and Turing instability in a modified Leslie-Gower prey-predator model\",\"authors\":\"Yan Meng, Guangwu Wen, L. Min\",\"doi\":\"10.1109/ISB.2013.6623798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study a modified Leslie-Gower prey-predator model in the presence of nonlinear harvesting in prey subject to the Neumann boundary condition. Our results reveal the conditions on the parameters so that the periodic solution exist surrounding the interior equilibrium. Furthermore, the direction of Hopf bifurcation and the stability of bifurcated periodic solutions are investigated. For the model with the Neumann boundary condition, Turing instability of the interior equilibrium solution is studied. In particular, Turing instability region regarding the parameters is established. Numerical simulations are carried out to demonstrate the results obtained.\",\"PeriodicalId\":151775,\"journal\":{\"name\":\"2013 7th International Conference on Systems Biology (ISB)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 7th International Conference on Systems Biology (ISB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISB.2013.6623798\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 7th International Conference on Systems Biology (ISB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISB.2013.6623798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在Neumann边界条件下,研究了一类存在非线性捕获的改进的Leslie-Gower捕食模型。我们的结果揭示了在内部平衡周围存在周期解的参数条件。进一步研究了Hopf分岔的方向和分岔周期解的稳定性。对于具有Neumann边界条件的模型,研究了内部平衡解的图灵不稳定性。特别是建立了关于参数的图灵不稳定区域。数值模拟验证了所得结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hopf bifurcation and Turing instability in a modified Leslie-Gower prey-predator model
In this paper, we study a modified Leslie-Gower prey-predator model in the presence of nonlinear harvesting in prey subject to the Neumann boundary condition. Our results reveal the conditions on the parameters so that the periodic solution exist surrounding the interior equilibrium. Furthermore, the direction of Hopf bifurcation and the stability of bifurcated periodic solutions are investigated. For the model with the Neumann boundary condition, Turing instability of the interior equilibrium solution is studied. In particular, Turing instability region regarding the parameters is established. Numerical simulations are carried out to demonstrate the results obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信