蜻蜓优化算法(Doa)在多约束有界数包中的应用

Laylatul Febriana Nilasari, K. A. Santoso, Abduh Riski
{"title":"蜻蜓优化算法(Doa)在多约束有界数包中的应用","authors":"Laylatul Febriana Nilasari, K. A. Santoso, Abduh Riski","doi":"10.19184/mims.v19i1.17264","DOIUrl":null,"url":null,"abstract":"Optimization is very useful in almost all fields in running a business effectively and efficiently to achieve the desired results. This study solves the problem of multiple constraints bounded knapsack by implementing DOA. The problem of multiple constraints bounded knapsack has more than ones constraint with objects that are entered into the storage media, the dimensions can be partially or completely included, but the number of objects is limited. The purpose of this study is to determine the results of using DOA to solve multiple constraits bounded knapsack and the effectiveness of DOA compared to the results of the Simplex method. The data used in this study are primary data. There are ten parameters to be tested, namely population parameters, maximum iteration, s, a, c, f, e and range. The trial results of the ten parameters show that the best value of the parameters is neither too large nor too small. If the best value is too large then the position of the dragonfly will be randomized so that it is not clear the position of the dragonfly and if it is too small the best value then the change is not visible. In addition, based on the results of the final experiment it can be seen that DOA is less effective in solving multiple constraints bounded knapsack problems, because of many experiments there is no solution similar to Simplex. DOA approach to optimal, seen from a small deviation. \nKeywords: DOA, Knapsack, Multiple constraints bounded knapsack problem.","PeriodicalId":264607,"journal":{"name":"Majalah Ilmiah Matematika dan Statistika","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PENERAPAN DRAGONFLY OPTIMIZATION ALGORITHM (DOA) PADA PERMASALAHAN MULTIPLE CONSTRAINTS BOUNDED KNAPSACK\",\"authors\":\"Laylatul Febriana Nilasari, K. A. Santoso, Abduh Riski\",\"doi\":\"10.19184/mims.v19i1.17264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimization is very useful in almost all fields in running a business effectively and efficiently to achieve the desired results. This study solves the problem of multiple constraints bounded knapsack by implementing DOA. The problem of multiple constraints bounded knapsack has more than ones constraint with objects that are entered into the storage media, the dimensions can be partially or completely included, but the number of objects is limited. The purpose of this study is to determine the results of using DOA to solve multiple constraits bounded knapsack and the effectiveness of DOA compared to the results of the Simplex method. The data used in this study are primary data. There are ten parameters to be tested, namely population parameters, maximum iteration, s, a, c, f, e and range. The trial results of the ten parameters show that the best value of the parameters is neither too large nor too small. If the best value is too large then the position of the dragonfly will be randomized so that it is not clear the position of the dragonfly and if it is too small the best value then the change is not visible. In addition, based on the results of the final experiment it can be seen that DOA is less effective in solving multiple constraints bounded knapsack problems, because of many experiments there is no solution similar to Simplex. DOA approach to optimal, seen from a small deviation. \\nKeywords: DOA, Knapsack, Multiple constraints bounded knapsack problem.\",\"PeriodicalId\":264607,\"journal\":{\"name\":\"Majalah Ilmiah Matematika dan Statistika\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Majalah Ilmiah Matematika dan Statistika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19184/mims.v19i1.17264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Majalah Ilmiah Matematika dan Statistika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19184/mims.v19i1.17264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

优化在几乎所有领域都非常有用,可以有效地运行业务,以达到预期的结果。本研究通过实现DOA来解决多约束有界背包的问题。多约束有界背包问题是一个以上的约束,对象被输入存储介质,其尺寸可以部分或全部包含,但对象的数量是有限的。本研究的目的是确定用DOA求解多约束有界背包问题的结果,并与单纯形法的结果进行比较。本研究使用的数据为原始数据。需要测试的参数有10个,分别是总体参数、最大迭代次数、s、a、c、f、e和range。十个参数的试验结果表明,参数的最佳值既不太大也不太小。如果最佳值太大,那么蜻蜓的位置将被随机化,这样蜻蜓的位置就不清楚了;如果最佳值太小,那么变化就不可见了。另外,从最后的实验结果可以看出,DOA算法在求解多约束有界背包问题时效果较差,因为很多实验都没有类似于单纯形的解。DOA接近最优,从一个小的偏差来看。关键词:方位分析,背包,多约束有界背包问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PENERAPAN DRAGONFLY OPTIMIZATION ALGORITHM (DOA) PADA PERMASALAHAN MULTIPLE CONSTRAINTS BOUNDED KNAPSACK
Optimization is very useful in almost all fields in running a business effectively and efficiently to achieve the desired results. This study solves the problem of multiple constraints bounded knapsack by implementing DOA. The problem of multiple constraints bounded knapsack has more than ones constraint with objects that are entered into the storage media, the dimensions can be partially or completely included, but the number of objects is limited. The purpose of this study is to determine the results of using DOA to solve multiple constraits bounded knapsack and the effectiveness of DOA compared to the results of the Simplex method. The data used in this study are primary data. There are ten parameters to be tested, namely population parameters, maximum iteration, s, a, c, f, e and range. The trial results of the ten parameters show that the best value of the parameters is neither too large nor too small. If the best value is too large then the position of the dragonfly will be randomized so that it is not clear the position of the dragonfly and if it is too small the best value then the change is not visible. In addition, based on the results of the final experiment it can be seen that DOA is less effective in solving multiple constraints bounded knapsack problems, because of many experiments there is no solution similar to Simplex. DOA approach to optimal, seen from a small deviation. Keywords: DOA, Knapsack, Multiple constraints bounded knapsack problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信