CLAMOT:基于多模态特征聚合的三维检测和跟踪

Shuo Zhang, Xiaolong Liu, Wenqi Tao
{"title":"CLAMOT:基于多模态特征聚合的三维检测和跟踪","authors":"Shuo Zhang, Xiaolong Liu, Wenqi Tao","doi":"10.1145/3529446.3529451","DOIUrl":null,"url":null,"abstract":"In autonomous driving, multi-object tracking (MOT) can help vehicles perceive surroundings better and perform well-informed motion-planning. Methods based on LiDAR suffer from the sparsity of LiDAR points and detect only in a limited range. To this end, we propose a camera and LiDAR aggregation module named CLA-fusion to fuse the two modal features in a point-wise manner. The enhanced points can be used for extracting features through a 3D backbone. For the detection, we adopts a center-based method which means detecting the centers of objects by a keypoint detector and regressing other attributes, like 3D size, velocity, etc. In the tracking part, we use a simple but effective matching strategy, closest-point matching. According to the structure and characteristics of the whole framework, we name our model CLAMOT. Our experiments on nuScenes and Waymo benchmarks achieve competitive results.","PeriodicalId":151062,"journal":{"name":"Proceedings of the 4th International Conference on Image Processing and Machine Vision","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CLAMOT: 3D Detection and Tracking via Multi-modal Feature Aggregation\",\"authors\":\"Shuo Zhang, Xiaolong Liu, Wenqi Tao\",\"doi\":\"10.1145/3529446.3529451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In autonomous driving, multi-object tracking (MOT) can help vehicles perceive surroundings better and perform well-informed motion-planning. Methods based on LiDAR suffer from the sparsity of LiDAR points and detect only in a limited range. To this end, we propose a camera and LiDAR aggregation module named CLA-fusion to fuse the two modal features in a point-wise manner. The enhanced points can be used for extracting features through a 3D backbone. For the detection, we adopts a center-based method which means detecting the centers of objects by a keypoint detector and regressing other attributes, like 3D size, velocity, etc. In the tracking part, we use a simple but effective matching strategy, closest-point matching. According to the structure and characteristics of the whole framework, we name our model CLAMOT. Our experiments on nuScenes and Waymo benchmarks achieve competitive results.\",\"PeriodicalId\":151062,\"journal\":{\"name\":\"Proceedings of the 4th International Conference on Image Processing and Machine Vision\",\"volume\":\"109 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 4th International Conference on Image Processing and Machine Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3529446.3529451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th International Conference on Image Processing and Machine Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3529446.3529451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在自动驾驶中,多目标跟踪(MOT)可以帮助车辆更好地感知周围环境并执行明智的运动规划。基于激光雷达的方法受到激光雷达点的稀疏性和探测范围的限制。为此,我们提出了一个名为CLA-fusion的相机和LiDAR聚合模块,以点为方向融合两个模态特征。增强点可用于通过三维主干提取特征。对于检测,我们采用基于中心的方法,即通过关键点检测器检测物体的中心,并回归其他属性,如3D尺寸,速度等。在跟踪部分,我们使用了一种简单而有效的匹配策略——最近点匹配。根据整个框架的结构和特点,我们将模型命名为CLAMOT。我们在nuScenes和Waymo基准上的实验取得了具有竞争力的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CLAMOT: 3D Detection and Tracking via Multi-modal Feature Aggregation
In autonomous driving, multi-object tracking (MOT) can help vehicles perceive surroundings better and perform well-informed motion-planning. Methods based on LiDAR suffer from the sparsity of LiDAR points and detect only in a limited range. To this end, we propose a camera and LiDAR aggregation module named CLA-fusion to fuse the two modal features in a point-wise manner. The enhanced points can be used for extracting features through a 3D backbone. For the detection, we adopts a center-based method which means detecting the centers of objects by a keypoint detector and regressing other attributes, like 3D size, velocity, etc. In the tracking part, we use a simple but effective matching strategy, closest-point matching. According to the structure and characteristics of the whole framework, we name our model CLAMOT. Our experiments on nuScenes and Waymo benchmarks achieve competitive results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信