FeatureNet:点云的上采样及其相关功能

Shanthika Naik, U. Mudenagudi, R. Tabib, Adarsh Jamadandi
{"title":"FeatureNet:点云的上采样及其相关功能","authors":"Shanthika Naik, U. Mudenagudi, R. Tabib, Adarsh Jamadandi","doi":"10.1145/3415264.3425471","DOIUrl":null,"url":null,"abstract":"In this paper, we address the problem of 3D Point Cloud Upsampling, that is, given a set of points, the objective is to obtain denser point cloud representation. We achieve this by proposing a deep learning architecture that along with consuming point clouds directly, also accepts associated auxiliary information such as Normals and Colors and consequently upsamples them. We design a novel feature loss function to train this model. We demonstrate our work on ModelNet dataset and show consistent improvements over existing methods.","PeriodicalId":372541,"journal":{"name":"SIGGRAPH Asia 2020 Posters","volume":"293 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"FeatureNet: Upsampling of Point Cloud and it’s Associated Features\",\"authors\":\"Shanthika Naik, U. Mudenagudi, R. Tabib, Adarsh Jamadandi\",\"doi\":\"10.1145/3415264.3425471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address the problem of 3D Point Cloud Upsampling, that is, given a set of points, the objective is to obtain denser point cloud representation. We achieve this by proposing a deep learning architecture that along with consuming point clouds directly, also accepts associated auxiliary information such as Normals and Colors and consequently upsamples them. We design a novel feature loss function to train this model. We demonstrate our work on ModelNet dataset and show consistent improvements over existing methods.\",\"PeriodicalId\":372541,\"journal\":{\"name\":\"SIGGRAPH Asia 2020 Posters\",\"volume\":\"293 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGGRAPH Asia 2020 Posters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3415264.3425471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH Asia 2020 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3415264.3425471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在本文中,我们解决了三维点云的上采样问题,即给定一组点,目标是获得更密集的点云表示。我们通过提出一种深度学习架构来实现这一点,该架构除了直接消费点云外,还接受相关的辅助信息,如法线和颜色,并因此对它们进行上采样。我们设计了一个新的特征损失函数来训练这个模型。我们展示了我们在ModelNet数据集上的工作,并展示了对现有方法的一致改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FeatureNet: Upsampling of Point Cloud and it’s Associated Features
In this paper, we address the problem of 3D Point Cloud Upsampling, that is, given a set of points, the objective is to obtain denser point cloud representation. We achieve this by proposing a deep learning architecture that along with consuming point clouds directly, also accepts associated auxiliary information such as Normals and Colors and consequently upsamples them. We design a novel feature loss function to train this model. We demonstrate our work on ModelNet dataset and show consistent improvements over existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信