S. Alzaid, N. Hammad, Hamed I. Albalawi, Zainab N. Khan, Eter Othman, C. Hauser
{"title":"为TwinPrint提供先进的2D和3D模型可视化软件开发,TwinPrint是一种用于多材料打印的双臂3D生物打印系统","authors":"S. Alzaid, N. Hammad, Hamed I. Albalawi, Zainab N. Khan, Eter Othman, C. Hauser","doi":"10.18063/msam.v1i3.19","DOIUrl":null,"url":null,"abstract":"This research highlights the development of a two-dimensional (2D) and three-dimensional (3D) preview software for additive manufacturing (AM). The presented software can produce a virtual representation of an actuator’s path movements by reading and parsing the orders of the desired geometric code (G-code) file. It then simulates the coded sections into separate 2D layers and colored 3D objects in a graphical model. This allows users to validate the shapes before the 3D printing process. G-code is an operation language which is based on command lines of code written in an alphanumeric format. Each line of these commands controls one machining operation; this instructs the machine’s motion to move in an arc, a circle, or a straight line to perform a specific shape after compiling all code lines. AM technology is widely used in most manufacturing fields (e.g., medical, chemical, and research laboratories) as a prototyping technology due to its ability to produce rapid prototyping models. 3D printing creates physical 3D models by extruding material layer by layer as 2D layers. At present, the most critical challenges in AM technology are drastically reducing prototyping materials’ consumption and time spent. To address these challenges, the proposed software allows for visualization of G-code files and predicting the overall layers’ shapes, allowing both structure prediction and subsequent printing error reduction.","PeriodicalId":422581,"journal":{"name":"Materials Science in Additive Manufacturing","volume":"255 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Advanced software development of 2D and 3D model visualization for TwinPrint, a dual-arm 3D bioprinting system for multi-material printing\",\"authors\":\"S. Alzaid, N. Hammad, Hamed I. Albalawi, Zainab N. Khan, Eter Othman, C. Hauser\",\"doi\":\"10.18063/msam.v1i3.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research highlights the development of a two-dimensional (2D) and three-dimensional (3D) preview software for additive manufacturing (AM). The presented software can produce a virtual representation of an actuator’s path movements by reading and parsing the orders of the desired geometric code (G-code) file. It then simulates the coded sections into separate 2D layers and colored 3D objects in a graphical model. This allows users to validate the shapes before the 3D printing process. G-code is an operation language which is based on command lines of code written in an alphanumeric format. Each line of these commands controls one machining operation; this instructs the machine’s motion to move in an arc, a circle, or a straight line to perform a specific shape after compiling all code lines. AM technology is widely used in most manufacturing fields (e.g., medical, chemical, and research laboratories) as a prototyping technology due to its ability to produce rapid prototyping models. 3D printing creates physical 3D models by extruding material layer by layer as 2D layers. At present, the most critical challenges in AM technology are drastically reducing prototyping materials’ consumption and time spent. To address these challenges, the proposed software allows for visualization of G-code files and predicting the overall layers’ shapes, allowing both structure prediction and subsequent printing error reduction.\",\"PeriodicalId\":422581,\"journal\":{\"name\":\"Materials Science in Additive Manufacturing\",\"volume\":\"255 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science in Additive Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18063/msam.v1i3.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Additive Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18063/msam.v1i3.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Advanced software development of 2D and 3D model visualization for TwinPrint, a dual-arm 3D bioprinting system for multi-material printing
This research highlights the development of a two-dimensional (2D) and three-dimensional (3D) preview software for additive manufacturing (AM). The presented software can produce a virtual representation of an actuator’s path movements by reading and parsing the orders of the desired geometric code (G-code) file. It then simulates the coded sections into separate 2D layers and colored 3D objects in a graphical model. This allows users to validate the shapes before the 3D printing process. G-code is an operation language which is based on command lines of code written in an alphanumeric format. Each line of these commands controls one machining operation; this instructs the machine’s motion to move in an arc, a circle, or a straight line to perform a specific shape after compiling all code lines. AM technology is widely used in most manufacturing fields (e.g., medical, chemical, and research laboratories) as a prototyping technology due to its ability to produce rapid prototyping models. 3D printing creates physical 3D models by extruding material layer by layer as 2D layers. At present, the most critical challenges in AM technology are drastically reducing prototyping materials’ consumption and time spent. To address these challenges, the proposed software allows for visualization of G-code files and predicting the overall layers’ shapes, allowing both structure prediction and subsequent printing error reduction.