一种新的在线预测用户未来移动的分类模型

Mehrdad Jalali, N. Mustapha, A. Mamat, M. N. Sulaiman
{"title":"一种新的在线预测用户未来移动的分类模型","authors":"Mehrdad Jalali, N. Mustapha, A. Mamat, M. N. Sulaiman","doi":"10.1109/ITSIM.2008.4631852","DOIUrl":null,"url":null,"abstract":"Nowadays many internet users prefer to navigate their interest web pages in special web site rather than navigating all web pages in the web site. For this reason some techniques have been developed for predicting user’s future requests. Data manning algorithms can be applied to many prediction problems. We can exploit Web Usage Mining for Knowledge extracting based on user behavior during the web navigation. The WUM applies data mining techniques for extracting knowledge from user log files in the particular web server. The WUM can model user behavior and, therefore, to forecast their future movements by mining user navigation patterns. To provide online prediction efficiently, we advance architecture for online predicting in web usage mining system by proposing novel model based on Longest Common Subsequence algorithm for classifying user navigation patterns. The prediction of users’ future movements by this manner can improve accuracy of recommendations.","PeriodicalId":314159,"journal":{"name":"2008 International Symposium on Information Technology","volume":"317 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"A new classification model for online predicting users’ future movements\",\"authors\":\"Mehrdad Jalali, N. Mustapha, A. Mamat, M. N. Sulaiman\",\"doi\":\"10.1109/ITSIM.2008.4631852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays many internet users prefer to navigate their interest web pages in special web site rather than navigating all web pages in the web site. For this reason some techniques have been developed for predicting user’s future requests. Data manning algorithms can be applied to many prediction problems. We can exploit Web Usage Mining for Knowledge extracting based on user behavior during the web navigation. The WUM applies data mining techniques for extracting knowledge from user log files in the particular web server. The WUM can model user behavior and, therefore, to forecast their future movements by mining user navigation patterns. To provide online prediction efficiently, we advance architecture for online predicting in web usage mining system by proposing novel model based on Longest Common Subsequence algorithm for classifying user navigation patterns. The prediction of users’ future movements by this manner can improve accuracy of recommendations.\",\"PeriodicalId\":314159,\"journal\":{\"name\":\"2008 International Symposium on Information Technology\",\"volume\":\"317 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Symposium on Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSIM.2008.4631852\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Symposium on Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSIM.2008.4631852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

如今,许多互联网用户更喜欢在特定的网站上浏览他们感兴趣的网页,而不是在网站上浏览所有的网页。由于这个原因,已经开发了一些技术来预测用户未来的请求。数据调度算法可以应用于许多预测问题。我们可以利用Web Usage Mining来提取基于用户在Web导航过程中的行为的知识。WUM应用数据挖掘技术从特定web服务器的用户日志文件中提取知识。WUM可以对用户行为进行建模,从而通过挖掘用户导航模式来预测他们未来的移动。为了有效地提供在线预测,提出了基于最长公共子序列算法的用户导航模式分类模型,从而改进了web使用挖掘系统的在线预测体系结构。通过这种方式预测用户未来的运动,可以提高推荐的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new classification model for online predicting users’ future movements
Nowadays many internet users prefer to navigate their interest web pages in special web site rather than navigating all web pages in the web site. For this reason some techniques have been developed for predicting user’s future requests. Data manning algorithms can be applied to many prediction problems. We can exploit Web Usage Mining for Knowledge extracting based on user behavior during the web navigation. The WUM applies data mining techniques for extracting knowledge from user log files in the particular web server. The WUM can model user behavior and, therefore, to forecast their future movements by mining user navigation patterns. To provide online prediction efficiently, we advance architecture for online predicting in web usage mining system by proposing novel model based on Longest Common Subsequence algorithm for classifying user navigation patterns. The prediction of users’ future movements by this manner can improve accuracy of recommendations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信