动态网络的容错聚合

Paulo Jesus, Carlos Baquero, Paulo Sérgio Almeida
{"title":"动态网络的容错聚合","authors":"Paulo Jesus, Carlos Baquero, Paulo Sérgio Almeida","doi":"10.1109/SRDS.2010.13","DOIUrl":null,"url":null,"abstract":"Data aggregation is a fundamental building block of modern distributed systems. Averaging based approaches, commonly designated gossip-based, are an important class of aggregation algorithms as they allow all nodes to produce a result, converge to any required accuracy, and work independently from the network topology. However, existing approaches exhibit many dependability issues when used in faulty and dynamic environments. This paper extends our own technique, Flow Updating, which is immune to message loss, to operate in dynamic networks, improving its fault tolerance characteristics. Experimental results show that the novel version of Flow Updating vastly outperforms previous averaging algorithms, it self adapts to churn without requiring any periodic restart, supporting node crashes and high levels of message loss.","PeriodicalId":219204,"journal":{"name":"2010 29th IEEE Symposium on Reliable Distributed Systems","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Fault-Tolerant Aggregation for Dynamic Networks\",\"authors\":\"Paulo Jesus, Carlos Baquero, Paulo Sérgio Almeida\",\"doi\":\"10.1109/SRDS.2010.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data aggregation is a fundamental building block of modern distributed systems. Averaging based approaches, commonly designated gossip-based, are an important class of aggregation algorithms as they allow all nodes to produce a result, converge to any required accuracy, and work independently from the network topology. However, existing approaches exhibit many dependability issues when used in faulty and dynamic environments. This paper extends our own technique, Flow Updating, which is immune to message loss, to operate in dynamic networks, improving its fault tolerance characteristics. Experimental results show that the novel version of Flow Updating vastly outperforms previous averaging algorithms, it self adapts to churn without requiring any periodic restart, supporting node crashes and high levels of message loss.\",\"PeriodicalId\":219204,\"journal\":{\"name\":\"2010 29th IEEE Symposium on Reliable Distributed Systems\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 29th IEEE Symposium on Reliable Distributed Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SRDS.2010.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 29th IEEE Symposium on Reliable Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SRDS.2010.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

数据聚合是现代分布式系统的基本组成部分。基于平均的方法,通常被称为基于八卦的方法,是一类重要的聚合算法,因为它们允许所有节点产生一个结果,收敛到任何所需的精度,并且独立于网络拓扑工作。然而,现有的方法在错误的和动态的环境中使用时表现出许多可靠性问题。本文将不受消息丢失影响的流更新技术扩展到动态网络中,提高了其容错特性。实验结果表明,新版本的流更新大大优于以前的平均算法,它自己适应混乱而不需要任何周期性重启,支持节点崩溃和高水平的消息丢失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault-Tolerant Aggregation for Dynamic Networks
Data aggregation is a fundamental building block of modern distributed systems. Averaging based approaches, commonly designated gossip-based, are an important class of aggregation algorithms as they allow all nodes to produce a result, converge to any required accuracy, and work independently from the network topology. However, existing approaches exhibit many dependability issues when used in faulty and dynamic environments. This paper extends our own technique, Flow Updating, which is immune to message loss, to operate in dynamic networks, improving its fault tolerance characteristics. Experimental results show that the novel version of Flow Updating vastly outperforms previous averaging algorithms, it self adapts to churn without requiring any periodic restart, supporting node crashes and high levels of message loss.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信