基于知识图谱的可视化文档相似度框架

Prakhyath Rai, B. Shamantha Rai
{"title":"基于知识图谱的可视化文档相似度框架","authors":"Prakhyath Rai, B. Shamantha Rai","doi":"10.1109/DISCOVER55800.2022.9974739","DOIUrl":null,"url":null,"abstract":"Document processing has its foundation laid over the precise and efficient computation of document similarity. With the exponential growth of information resources, the document quantity explodes digitally and there’s always a tendency to equip with tools and frameworks which would assist in capturing the relevant and useful patterns from this free flow of contents. This paper illustrates a text refinement framework to compute the similarity of documents and visualize the similarity analysis. The method proposed in the paper employs knowledge graph technique to aid in visualizing the similarity scores of documents. The visualization is built on top of an information rich corpus extracted from the input documents in the form of triplets. The triplet information corpus then facilitates the computation of similarity score and aids in visualizing the analysis. Prior to triplet generation the input documents are pre-processed to eliminate noise, reduce randomness and lemmatized. The pre-processing and the triplet corpus aid in handling long documents by enhancing the process of similarity computation and visual analysis.","PeriodicalId":264177,"journal":{"name":"2022 International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics ( DISCOVER)","volume":"225 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visualized Document Similarity Framework with the aid of Knowledge Graph\",\"authors\":\"Prakhyath Rai, B. Shamantha Rai\",\"doi\":\"10.1109/DISCOVER55800.2022.9974739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Document processing has its foundation laid over the precise and efficient computation of document similarity. With the exponential growth of information resources, the document quantity explodes digitally and there’s always a tendency to equip with tools and frameworks which would assist in capturing the relevant and useful patterns from this free flow of contents. This paper illustrates a text refinement framework to compute the similarity of documents and visualize the similarity analysis. The method proposed in the paper employs knowledge graph technique to aid in visualizing the similarity scores of documents. The visualization is built on top of an information rich corpus extracted from the input documents in the form of triplets. The triplet information corpus then facilitates the computation of similarity score and aids in visualizing the analysis. Prior to triplet generation the input documents are pre-processed to eliminate noise, reduce randomness and lemmatized. The pre-processing and the triplet corpus aid in handling long documents by enhancing the process of similarity computation and visual analysis.\",\"PeriodicalId\":264177,\"journal\":{\"name\":\"2022 International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics ( DISCOVER)\",\"volume\":\"225 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics ( DISCOVER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DISCOVER55800.2022.9974739\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics ( DISCOVER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DISCOVER55800.2022.9974739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

准确、高效地计算文档相似度是文档处理的基础。随着信息资源的指数级增长,文档数量呈数字爆炸式增长,人们总是倾向于配备工具和框架,以帮助从这些自由流动的内容中捕获相关和有用的模式。本文给出了一个文本细化框架,用于计算文档的相似度,并将相似度分析可视化。本文提出的方法采用知识图技术来帮助可视化文档的相似度得分。可视化是建立在一个信息丰富的语料库之上的,语料库以三元组的形式从输入文档中提取。然后,三联体信息语料库便于相似性分数的计算,并有助于可视化分析。在三元组生成之前,对输入文档进行预处理以消除噪声,减少随机性和规范化。预处理和三元语料库通过增强相似度计算和可视化分析的过程来帮助处理长文档。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visualized Document Similarity Framework with the aid of Knowledge Graph
Document processing has its foundation laid over the precise and efficient computation of document similarity. With the exponential growth of information resources, the document quantity explodes digitally and there’s always a tendency to equip with tools and frameworks which would assist in capturing the relevant and useful patterns from this free flow of contents. This paper illustrates a text refinement framework to compute the similarity of documents and visualize the similarity analysis. The method proposed in the paper employs knowledge graph technique to aid in visualizing the similarity scores of documents. The visualization is built on top of an information rich corpus extracted from the input documents in the form of triplets. The triplet information corpus then facilitates the computation of similarity score and aids in visualizing the analysis. Prior to triplet generation the input documents are pre-processed to eliminate noise, reduce randomness and lemmatized. The pre-processing and the triplet corpus aid in handling long documents by enhancing the process of similarity computation and visual analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信