基于卷积神经网络的土壤图像分类

Kajal Chatterjee, M. Obaidat, Debabrata Samanta, B. Sadoun, SK Hafizul Islam, Rajdeep Chatterjee
{"title":"基于卷积神经网络的土壤图像分类","authors":"Kajal Chatterjee, M. Obaidat, Debabrata Samanta, B. Sadoun, SK Hafizul Islam, Rajdeep Chatterjee","doi":"10.1109/CCCI52664.2021.9583192","DOIUrl":null,"url":null,"abstract":"Classification of soil is crucial for the agricultural domain as it is an essential task in geology and engineering domains. Various procedures are proposed to classify soil types in the literature, but many of them consumed much time or required specially designed equipments/applications. Classification of soil involves the accounting of various factors due to its diversified nature. It can be observed that several critical domain-oriented decisions often depend on the type of soil like farmers might be benefitted from knowing the kind of soil to choose crops accordingly for cultivation. We have employed different Convolution Neural Network (CNN) architectures to identify the soil type accurately in real-time. This paper describes the comparative evaluation in terms of performances of various CNN architectures, namely, ResNet50, VGG19, MobileNetV2, VGG16, NASNetMobile, and InceptionV3. These CNN models are used to classify four types of soils: Clay, Black, Alluvial, and Red. The performance of the ResNet50 model is the best with a training accuracy and training loss of 99.47% and 0.0252, respectively compared to other competing models considered in this paper.","PeriodicalId":136382,"journal":{"name":"2021 International Conference on Communications, Computing, Cybersecurity, and Informatics (CCCI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Classification of Soil Images using Convolution Neural Networks\",\"authors\":\"Kajal Chatterjee, M. Obaidat, Debabrata Samanta, B. Sadoun, SK Hafizul Islam, Rajdeep Chatterjee\",\"doi\":\"10.1109/CCCI52664.2021.9583192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification of soil is crucial for the agricultural domain as it is an essential task in geology and engineering domains. Various procedures are proposed to classify soil types in the literature, but many of them consumed much time or required specially designed equipments/applications. Classification of soil involves the accounting of various factors due to its diversified nature. It can be observed that several critical domain-oriented decisions often depend on the type of soil like farmers might be benefitted from knowing the kind of soil to choose crops accordingly for cultivation. We have employed different Convolution Neural Network (CNN) architectures to identify the soil type accurately in real-time. This paper describes the comparative evaluation in terms of performances of various CNN architectures, namely, ResNet50, VGG19, MobileNetV2, VGG16, NASNetMobile, and InceptionV3. These CNN models are used to classify four types of soils: Clay, Black, Alluvial, and Red. The performance of the ResNet50 model is the best with a training accuracy and training loss of 99.47% and 0.0252, respectively compared to other competing models considered in this paper.\",\"PeriodicalId\":136382,\"journal\":{\"name\":\"2021 International Conference on Communications, Computing, Cybersecurity, and Informatics (CCCI)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Communications, Computing, Cybersecurity, and Informatics (CCCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCCI52664.2021.9583192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Communications, Computing, Cybersecurity, and Informatics (CCCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCCI52664.2021.9583192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

土壤分类是农业领域的一项重要工作,也是地质和工程领域的一项重要工作。文献中提出了各种土壤类型分类方法,但其中许多方法耗时长或需要专门设计的设备/应用程序。土壤的分类由于其多样性,涉及到各种因素的核算。可以观察到,一些关键的面向领域的决策通常取决于土壤的类型,比如农民可能会从了解土壤的类型中受益,从而相应地选择作物进行种植。我们采用了不同的卷积神经网络(CNN)架构来实时准确地识别土壤类型。本文对ResNet50、VGG19、MobileNetV2、VGG16、NASNetMobile和InceptionV3等几种CNN架构的性能进行了比较评估。这些CNN模型被用来对四种类型的土壤进行分类:粘土、黑色、冲积和红色。与本文考虑的其他竞争模型相比,ResNet50模型的训练准确率和训练损失分别为99.47%和0.0252,性能最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of Soil Images using Convolution Neural Networks
Classification of soil is crucial for the agricultural domain as it is an essential task in geology and engineering domains. Various procedures are proposed to classify soil types in the literature, but many of them consumed much time or required specially designed equipments/applications. Classification of soil involves the accounting of various factors due to its diversified nature. It can be observed that several critical domain-oriented decisions often depend on the type of soil like farmers might be benefitted from knowing the kind of soil to choose crops accordingly for cultivation. We have employed different Convolution Neural Network (CNN) architectures to identify the soil type accurately in real-time. This paper describes the comparative evaluation in terms of performances of various CNN architectures, namely, ResNet50, VGG19, MobileNetV2, VGG16, NASNetMobile, and InceptionV3. These CNN models are used to classify four types of soils: Clay, Black, Alluvial, and Red. The performance of the ResNet50 model is the best with a training accuracy and training loss of 99.47% and 0.0252, respectively compared to other competing models considered in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信