{"title":"基于联合ctc -注意力模型的流媒体端到端语音识别","authors":"Niko Moritz, Takaaki Hori, Jonathan Le Roux","doi":"10.1109/ASRU46091.2019.9003920","DOIUrl":null,"url":null,"abstract":"In this paper, we present a one-pass decoding algorithm for streaming recognition with joint connectionist temporal classification (CTC) and attention-based end-to-end automatic speech recognition (ASR) models. The decoding scheme is based on a frame-synchronous CTC prefix beam search algorithm and the recently proposed triggered attention concept. To achieve a fully streaming end-to-end ASR system, the CTC-triggered attention decoder is combined with a unidirectional encoder neural network based on parallel time-delayed long short-term memory (PTDLSTM) streams, which has demonstrated superior performance compared to various other streaming encoder architectures in earlier work. A new type of pre-training method is studied to further improve our streaming ASR models by adding residual connections to the encoder neural network and layer-wise removing them during the training process. The proposed joint CTC-triggered attention decoding algorithm, which enables streaming recognition of attention-based ASR systems, achieves similar ASR results compared to offline CTC-attention decoding and significantly better results compared to CTC prefix beam search decoding alone.","PeriodicalId":150913,"journal":{"name":"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Streaming End-to-End Speech Recognition with Joint CTC-Attention Based Models\",\"authors\":\"Niko Moritz, Takaaki Hori, Jonathan Le Roux\",\"doi\":\"10.1109/ASRU46091.2019.9003920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a one-pass decoding algorithm for streaming recognition with joint connectionist temporal classification (CTC) and attention-based end-to-end automatic speech recognition (ASR) models. The decoding scheme is based on a frame-synchronous CTC prefix beam search algorithm and the recently proposed triggered attention concept. To achieve a fully streaming end-to-end ASR system, the CTC-triggered attention decoder is combined with a unidirectional encoder neural network based on parallel time-delayed long short-term memory (PTDLSTM) streams, which has demonstrated superior performance compared to various other streaming encoder architectures in earlier work. A new type of pre-training method is studied to further improve our streaming ASR models by adding residual connections to the encoder neural network and layer-wise removing them during the training process. The proposed joint CTC-triggered attention decoding algorithm, which enables streaming recognition of attention-based ASR systems, achieves similar ASR results compared to offline CTC-attention decoding and significantly better results compared to CTC prefix beam search decoding alone.\",\"PeriodicalId\":150913,\"journal\":{\"name\":\"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU46091.2019.9003920\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU46091.2019.9003920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Streaming End-to-End Speech Recognition with Joint CTC-Attention Based Models
In this paper, we present a one-pass decoding algorithm for streaming recognition with joint connectionist temporal classification (CTC) and attention-based end-to-end automatic speech recognition (ASR) models. The decoding scheme is based on a frame-synchronous CTC prefix beam search algorithm and the recently proposed triggered attention concept. To achieve a fully streaming end-to-end ASR system, the CTC-triggered attention decoder is combined with a unidirectional encoder neural network based on parallel time-delayed long short-term memory (PTDLSTM) streams, which has demonstrated superior performance compared to various other streaming encoder architectures in earlier work. A new type of pre-training method is studied to further improve our streaming ASR models by adding residual connections to the encoder neural network and layer-wise removing them during the training process. The proposed joint CTC-triggered attention decoding algorithm, which enables streaming recognition of attention-based ASR systems, achieves similar ASR results compared to offline CTC-attention decoding and significantly better results compared to CTC prefix beam search decoding alone.