{"title":"基于分段的高速列车交通建模与调度研究","authors":"Peng Yue, Yaochu Jin, X. Dai, D. Cui, Qi Shi","doi":"10.1109/DOCS55193.2022.9967705","DOIUrl":null,"url":null,"abstract":"Affected by unexpected events, the nominal operation of high-speed trains will become invalid. To maintain the efficiency of trains, train dispatchers need to reschedule the train timetable, which is a challenging task. On the one hand, the dispatchers need to take into account complex conflicts between trains on the track; on the other hand, the rescheduled timetable should be efficient to reduce operating costs. To address the above issues, this study proposes a traffic modeling method for high-speed trains based on a block section to describe in detail the operation conflicts between trains. A train rescheduling approach combining reinforcement learning and model predictive control is proposed to accomplish train rescheduling efficiently. The experiments show the effectiveness of the proposed method.","PeriodicalId":348545,"journal":{"name":"2022 4th International Conference on Data-driven Optimization of Complex Systems (DOCS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Traffic Modeling and Rescheduling for High-speed Train Based on Block Sections\",\"authors\":\"Peng Yue, Yaochu Jin, X. Dai, D. Cui, Qi Shi\",\"doi\":\"10.1109/DOCS55193.2022.9967705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Affected by unexpected events, the nominal operation of high-speed trains will become invalid. To maintain the efficiency of trains, train dispatchers need to reschedule the train timetable, which is a challenging task. On the one hand, the dispatchers need to take into account complex conflicts between trains on the track; on the other hand, the rescheduled timetable should be efficient to reduce operating costs. To address the above issues, this study proposes a traffic modeling method for high-speed trains based on a block section to describe in detail the operation conflicts between trains. A train rescheduling approach combining reinforcement learning and model predictive control is proposed to accomplish train rescheduling efficiently. The experiments show the effectiveness of the proposed method.\",\"PeriodicalId\":348545,\"journal\":{\"name\":\"2022 4th International Conference on Data-driven Optimization of Complex Systems (DOCS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 4th International Conference on Data-driven Optimization of Complex Systems (DOCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DOCS55193.2022.9967705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Data-driven Optimization of Complex Systems (DOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DOCS55193.2022.9967705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Traffic Modeling and Rescheduling for High-speed Train Based on Block Sections
Affected by unexpected events, the nominal operation of high-speed trains will become invalid. To maintain the efficiency of trains, train dispatchers need to reschedule the train timetable, which is a challenging task. On the one hand, the dispatchers need to take into account complex conflicts between trains on the track; on the other hand, the rescheduled timetable should be efficient to reduce operating costs. To address the above issues, this study proposes a traffic modeling method for high-speed trains based on a block section to describe in detail the operation conflicts between trains. A train rescheduling approach combining reinforcement learning and model predictive control is proposed to accomplish train rescheduling efficiently. The experiments show the effectiveness of the proposed method.