预测信息传播树的未来参与者

Hsing-Huan Chung, Hen-Hsen Huang, Hsin-Hsi Chen
{"title":"预测信息传播树的未来参与者","authors":"Hsing-Huan Chung, Hen-Hsen Huang, Hsin-Hsi Chen","doi":"10.1145/3350546.3352540","DOIUrl":null,"url":null,"abstract":"Understanding how information propagates among social media users can allow researchers to provide interesting insights into online social networks and lead to applications such as precise advertising and misinformation management. In this work, we focus on information diffusion through post sharing. Given an information propagation tree, our goal is to predict a list of potential users of the tree. A framework based on graph convolutional network (GCN) is proposed to learn the latent representation of a propagation tree and match it with the latent representation of a user. A novel strategy for tree pruning is further investigated to improve the GCN. Experimental results show that our framework outperforms the existing methods for modeling information diffusion.CCS CONCEPTS• Information systems →Collaborative filtering; Social recommendation; Social networks; • Human-centered computing → Social content sharing; Social media; • Computing methodologies → Neural networks.","PeriodicalId":171168,"journal":{"name":"2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","volume":"453 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Predicting Future Participants of Information Propagation Trees\",\"authors\":\"Hsing-Huan Chung, Hen-Hsen Huang, Hsin-Hsi Chen\",\"doi\":\"10.1145/3350546.3352540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding how information propagates among social media users can allow researchers to provide interesting insights into online social networks and lead to applications such as precise advertising and misinformation management. In this work, we focus on information diffusion through post sharing. Given an information propagation tree, our goal is to predict a list of potential users of the tree. A framework based on graph convolutional network (GCN) is proposed to learn the latent representation of a propagation tree and match it with the latent representation of a user. A novel strategy for tree pruning is further investigated to improve the GCN. Experimental results show that our framework outperforms the existing methods for modeling information diffusion.CCS CONCEPTS• Information systems →Collaborative filtering; Social recommendation; Social networks; • Human-centered computing → Social content sharing; Social media; • Computing methodologies → Neural networks.\",\"PeriodicalId\":171168,\"journal\":{\"name\":\"2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI)\",\"volume\":\"453 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3350546.3352540\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3350546.3352540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

了解信息是如何在社交媒体用户之间传播的,可以让研究人员对在线社交网络提供有趣的见解,并导致诸如精确广告和错误信息管理等应用。在这项工作中,我们关注的是通过帖子分享来传播信息。给定一棵信息传播树,我们的目标是预测该树的潜在用户列表。提出了一种基于图卷积网络(GCN)的框架来学习传播树的潜在表示,并将其与用户的潜在表示进行匹配。进一步研究了一种新的树木修剪策略,以提高GCN。实验结果表明,该框架优于现有的信息扩散建模方法。•信息系统→协同过滤;社会的建议;社交网络;•以人为本→社交内容共享;社交媒体;•计算方法→神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Future Participants of Information Propagation Trees
Understanding how information propagates among social media users can allow researchers to provide interesting insights into online social networks and lead to applications such as precise advertising and misinformation management. In this work, we focus on information diffusion through post sharing. Given an information propagation tree, our goal is to predict a list of potential users of the tree. A framework based on graph convolutional network (GCN) is proposed to learn the latent representation of a propagation tree and match it with the latent representation of a user. A novel strategy for tree pruning is further investigated to improve the GCN. Experimental results show that our framework outperforms the existing methods for modeling information diffusion.CCS CONCEPTS• Information systems →Collaborative filtering; Social recommendation; Social networks; • Human-centered computing → Social content sharing; Social media; • Computing methodologies → Neural networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信