基于双层特征提取和超参数优化的癫痫发作检测

P. S, B. P, V. S, Sasmita. K
{"title":"基于双层特征提取和超参数优化的癫痫发作检测","authors":"P. S, B. P, V. S, Sasmita. K","doi":"10.1109/ICCMC53470.2022.9753964","DOIUrl":null,"url":null,"abstract":"Epileptic seizures happen owing to anarchy in intellect functionality that can influence patient's physical condition. Finding of epileptic seizures inception is fairly valuable for medication and emergency alerts. Machine learning techniques and computational methods play a key part in detecting epileptic seizures from Electroencephalograms (EEG) signals. The main objective of this work is to provide an ANN framework with optimized performance related to seizure detection. Here, a machine learning framework is employed for seizure detection where the two-layer feature extraction with ANN classifiers are used to categorize seizure and non-seizure data. To get better performance, the best parameters related to ANN with the dataset are identified through bayes-optimization method. This model affords a trustworthy feature extraction and optimization for training a detection model. The proposed model is evaluated using the popular public dataset CHB-MIT.","PeriodicalId":345346,"journal":{"name":"2022 6th International Conference on Computing Methodologies and Communication (ICCMC)","volume":"215 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Epileptic Seizure Detection using Two-Layer Feature Extraction and Hyper-Parameter Optimization\",\"authors\":\"P. S, B. P, V. S, Sasmita. K\",\"doi\":\"10.1109/ICCMC53470.2022.9753964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Epileptic seizures happen owing to anarchy in intellect functionality that can influence patient's physical condition. Finding of epileptic seizures inception is fairly valuable for medication and emergency alerts. Machine learning techniques and computational methods play a key part in detecting epileptic seizures from Electroencephalograms (EEG) signals. The main objective of this work is to provide an ANN framework with optimized performance related to seizure detection. Here, a machine learning framework is employed for seizure detection where the two-layer feature extraction with ANN classifiers are used to categorize seizure and non-seizure data. To get better performance, the best parameters related to ANN with the dataset are identified through bayes-optimization method. This model affords a trustworthy feature extraction and optimization for training a detection model. The proposed model is evaluated using the popular public dataset CHB-MIT.\",\"PeriodicalId\":345346,\"journal\":{\"name\":\"2022 6th International Conference on Computing Methodologies and Communication (ICCMC)\",\"volume\":\"215 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 6th International Conference on Computing Methodologies and Communication (ICCMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCMC53470.2022.9753964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th International Conference on Computing Methodologies and Communication (ICCMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCMC53470.2022.9753964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

癫痫发作的发生是由于智力功能混乱,影响患者的身体状况。发现癫痫发作初期对药物治疗和紧急警报相当有价值。机器学习技术和计算方法在从脑电图(EEG)信号检测癫痫发作中起着关键作用。这项工作的主要目标是提供一个与癫痫检测相关的性能优化的ANN框架。在这里,机器学习框架被用于癫痫检测,其中两层特征提取与人工神经网络分类器被用于对癫痫和非癫痫数据进行分类。为了获得更好的性能,通过贝叶斯优化方法识别与数据集相关的最佳人工神经网络参数。该模型为训练检测模型提供了可靠的特征提取和优化。使用流行的公共数据集CHB-MIT对所提出的模型进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Epileptic Seizure Detection using Two-Layer Feature Extraction and Hyper-Parameter Optimization
Epileptic seizures happen owing to anarchy in intellect functionality that can influence patient's physical condition. Finding of epileptic seizures inception is fairly valuable for medication and emergency alerts. Machine learning techniques and computational methods play a key part in detecting epileptic seizures from Electroencephalograms (EEG) signals. The main objective of this work is to provide an ANN framework with optimized performance related to seizure detection. Here, a machine learning framework is employed for seizure detection where the two-layer feature extraction with ANN classifiers are used to categorize seizure and non-seizure data. To get better performance, the best parameters related to ANN with the dataset are identified through bayes-optimization method. This model affords a trustworthy feature extraction and optimization for training a detection model. The proposed model is evaluated using the popular public dataset CHB-MIT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信