一种基于水平集的可变形图像分割模型

B. Nakhjavanlo, M. E. Gharehveran, Maryam Hajiesmaeili, T. Ellis, J. Dehmeshki
{"title":"一种基于水平集的可变形图像分割模型","authors":"B. Nakhjavanlo, M. E. Gharehveran, Maryam Hajiesmaeili, T. Ellis, J. Dehmeshki","doi":"10.1109/ICCP.2012.6356184","DOIUrl":null,"url":null,"abstract":"This paper presents a new level set-based image segmentation method. First, a Gabor filter is used to suppress of noise in the extracted regions of interest and guide the motion of the evolving contour detection. Second, Green's theorem is used to develop a region-based energy function, combined with diffusion-based smoothing, to separate low contrast regions. Results are presented for it's application to a variety of real and synthetic images, particularly those exhibiting texture properties. The results indicate the method is more effective than traditional region-based level set methods in coping with intensity inhomogeneities, noisy and textured images.","PeriodicalId":406461,"journal":{"name":"2012 IEEE 8th International Conference on Intelligent Computer Communication and Processing","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A deformable model based on level sets for image segmentation\",\"authors\":\"B. Nakhjavanlo, M. E. Gharehveran, Maryam Hajiesmaeili, T. Ellis, J. Dehmeshki\",\"doi\":\"10.1109/ICCP.2012.6356184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new level set-based image segmentation method. First, a Gabor filter is used to suppress of noise in the extracted regions of interest and guide the motion of the evolving contour detection. Second, Green's theorem is used to develop a region-based energy function, combined with diffusion-based smoothing, to separate low contrast regions. Results are presented for it's application to a variety of real and synthetic images, particularly those exhibiting texture properties. The results indicate the method is more effective than traditional region-based level set methods in coping with intensity inhomogeneities, noisy and textured images.\",\"PeriodicalId\":406461,\"journal\":{\"name\":\"2012 IEEE 8th International Conference on Intelligent Computer Communication and Processing\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 8th International Conference on Intelligent Computer Communication and Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCP.2012.6356184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 8th International Conference on Intelligent Computer Communication and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCP.2012.6356184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种新的基于水平集的图像分割方法。首先,使用Gabor滤波器抑制提取的感兴趣区域中的噪声,并指导不断发展的轮廓检测运动。其次,利用格林定理建立基于区域的能量函数,结合基于扩散的平滑,分离低对比度区域。最后给出了该方法在各种真实图像和合成图像上的应用结果,特别是那些具有纹理特性的图像。结果表明,该方法在处理强度不均匀性、噪声和纹理图像方面比传统的基于区域的水平集方法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A deformable model based on level sets for image segmentation
This paper presents a new level set-based image segmentation method. First, a Gabor filter is used to suppress of noise in the extracted regions of interest and guide the motion of the evolving contour detection. Second, Green's theorem is used to develop a region-based energy function, combined with diffusion-based smoothing, to separate low contrast regions. Results are presented for it's application to a variety of real and synthetic images, particularly those exhibiting texture properties. The results indicate the method is more effective than traditional region-based level set methods in coping with intensity inhomogeneities, noisy and textured images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信