用于动作识别的运动信息图像

Yue Yan, Jianming Liu, Qin Cheng, Zhenshan Lu
{"title":"用于动作识别的运动信息图像","authors":"Yue Yan, Jianming Liu, Qin Cheng, Zhenshan Lu","doi":"10.1109/ICSP54964.2022.9778732","DOIUrl":null,"url":null,"abstract":"The paper proposes an effective motion information computation method, called Motion Information Image, which can aggregate motion information of multiple frames into one frame to represent the dynamic process of compact motion in video for action recognition. Motion Information Image can adopt an average sampling strategy to represent the temporal modeling relationship of the video, which allows the clever conversion of motion information into image information. Besides, we use convolutional neural networks (CNNs) combined with Motion Information Image to build a new Motion Information Image network for end-to-end action recognition. The performance of the method is improved by 2.0%~3.0% in NTU RGB+D and NTU RGB+D 120 datasets with extensive experimental validation and exhibits significant advantages for recognizing fine-grained actions.","PeriodicalId":363766,"journal":{"name":"2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Motion Information Image for Action Recognition\",\"authors\":\"Yue Yan, Jianming Liu, Qin Cheng, Zhenshan Lu\",\"doi\":\"10.1109/ICSP54964.2022.9778732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proposes an effective motion information computation method, called Motion Information Image, which can aggregate motion information of multiple frames into one frame to represent the dynamic process of compact motion in video for action recognition. Motion Information Image can adopt an average sampling strategy to represent the temporal modeling relationship of the video, which allows the clever conversion of motion information into image information. Besides, we use convolutional neural networks (CNNs) combined with Motion Information Image to build a new Motion Information Image network for end-to-end action recognition. The performance of the method is improved by 2.0%~3.0% in NTU RGB+D and NTU RGB+D 120 datasets with extensive experimental validation and exhibits significant advantages for recognizing fine-grained actions.\",\"PeriodicalId\":363766,\"journal\":{\"name\":\"2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSP54964.2022.9778732\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSP54964.2022.9778732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种有效的运动信息计算方法——运动信息图像,它可以将多帧的运动信息聚合到一帧中,以表示视频中紧凑运动的动态过程,从而进行动作识别。运动信息图像可以采用平均采样策略来表示视频的时间建模关系,从而可以将运动信息巧妙地转换为图像信息。此外,我们将卷积神经网络(cnn)与运动信息图像(Motion Information Image)相结合,构建了一个新的运动信息图像网络,用于端到端动作识别。在NTU RGB+D和NTU RGB+D 120数据集上,该方法的性能提高了2.0%~3.0%,并得到了大量的实验验证,在细粒度动作识别方面具有明显的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Motion Information Image for Action Recognition
The paper proposes an effective motion information computation method, called Motion Information Image, which can aggregate motion information of multiple frames into one frame to represent the dynamic process of compact motion in video for action recognition. Motion Information Image can adopt an average sampling strategy to represent the temporal modeling relationship of the video, which allows the clever conversion of motion information into image information. Besides, we use convolutional neural networks (CNNs) combined with Motion Information Image to build a new Motion Information Image network for end-to-end action recognition. The performance of the method is improved by 2.0%~3.0% in NTU RGB+D and NTU RGB+D 120 datasets with extensive experimental validation and exhibits significant advantages for recognizing fine-grained actions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信