不同类型纳米燃料对柴油机性能的影响。

A. Nassir, H. Shahad
{"title":"不同类型纳米燃料对柴油机性能的影响。","authors":"A. Nassir, H. Shahad","doi":"10.29196/JUBES.V26I7.1485","DOIUrl":null,"url":null,"abstract":"The aim of this experimental work is to study the effect of nanoparticles added to diesel fuel on engine performance characteristic. Nano fuels are prepared by adding Al2O3 or TiO2, both with particle size less than 45nm of diesel fuel. Four doses of each type namely (25, 50, 100 and 150) ppm are prepared. These nanoparticles are blended with diesel fuel in varying volume fraction by the means of an electric mixer and an ultrasonicator. The Nano fuels are (DF+Al2O3) and (DF+TiO2). Physicochemical properties of nano fuels are measured and compared with these of neat diesel. The study shows that the addition of nanoparticles to diesel fuel improves its physical properties such as cetane number, thermal conductivity and viscosity. The influence of nanoparticles addition is very clear on the engine performance. The results show that the performance parameters are improved for example, brake thermal efficiency is increased from 19.4% for diesel to 21% and 25% for DF+Al2O3 and DF+TiO2 respectively, the brake specific fuel consumption (BSFC) is decreased by 8% and 20% for DF+Al2O3 and DF+TiO2 respectively, the brake specific energy consumption (BSFC) is decreased by 8% and 20% for DF+Al2O3 and DF+TiO2 respectively at 25ppm and 75% load. The exhaust gas temperature is 382°C for pure diesel while it is 417°C for DF+Al2O3 and 353°C for DF+TiO2. The peak pressure for pure diesel is 62 bar and it increases with DF+Al2O3 to 66.2 bar as for DF+TiO2 the peak pressure decreases to 57.2 bar at full load and 150ppm.                                                                ","PeriodicalId":311103,"journal":{"name":"Journal of University of Babylon for Engineering Sciences","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Experimental Study of a Diesel Engine Performance Fueled with Different Types of Nano-Fuel.\",\"authors\":\"A. Nassir, H. Shahad\",\"doi\":\"10.29196/JUBES.V26I7.1485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this experimental work is to study the effect of nanoparticles added to diesel fuel on engine performance characteristic. Nano fuels are prepared by adding Al2O3 or TiO2, both with particle size less than 45nm of diesel fuel. Four doses of each type namely (25, 50, 100 and 150) ppm are prepared. These nanoparticles are blended with diesel fuel in varying volume fraction by the means of an electric mixer and an ultrasonicator. The Nano fuels are (DF+Al2O3) and (DF+TiO2). Physicochemical properties of nano fuels are measured and compared with these of neat diesel. The study shows that the addition of nanoparticles to diesel fuel improves its physical properties such as cetane number, thermal conductivity and viscosity. The influence of nanoparticles addition is very clear on the engine performance. The results show that the performance parameters are improved for example, brake thermal efficiency is increased from 19.4% for diesel to 21% and 25% for DF+Al2O3 and DF+TiO2 respectively, the brake specific fuel consumption (BSFC) is decreased by 8% and 20% for DF+Al2O3 and DF+TiO2 respectively, the brake specific energy consumption (BSFC) is decreased by 8% and 20% for DF+Al2O3 and DF+TiO2 respectively at 25ppm and 75% load. The exhaust gas temperature is 382°C for pure diesel while it is 417°C for DF+Al2O3 and 353°C for DF+TiO2. The peak pressure for pure diesel is 62 bar and it increases with DF+Al2O3 to 66.2 bar as for DF+TiO2 the peak pressure decreases to 57.2 bar at full load and 150ppm.                                                                \",\"PeriodicalId\":311103,\"journal\":{\"name\":\"Journal of University of Babylon for Engineering Sciences\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of University of Babylon for Engineering Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29196/JUBES.V26I7.1485\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of University of Babylon for Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29196/JUBES.V26I7.1485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本实验工作的目的是研究在柴油中添加纳米颗粒对发动机性能特性的影响。纳米燃料是通过添加Al2O3或TiO2制备的,两者的粒径都小于柴油燃料的45nm。每种类型的四种剂量即(25、50、100和150)ppm。这些纳米颗粒通过电动搅拌器和超声波机与不同体积分数的柴油混合。纳米燃料为(DF+Al2O3)和(DF+TiO2)。测定了纳米燃料的物理化学性质,并与纯柴油进行了比较。研究表明,在柴油中加入纳米颗粒可以改善其十六烷值、导热性和粘度等物理性能。纳米颗粒的加入对发动机性能的影响非常明显。结果表明:在25ppm和75%负荷下,DF+Al2O3和DF+TiO2分别使制动热效率从19.4%提高到21%和25%,DF+Al2O3和DF+TiO2分别使制动比油耗(BSFC)降低8%和20%,DF+Al2O3和DF+TiO2分别使制动比能耗(BSFC)降低8%和20%。纯柴油的废气温度为382℃,而DF+Al2O3的废气温度为417℃,DF+TiO2的废气温度为353℃。纯柴油的峰值压力为62 bar, DF+Al2O3的峰值压力增加到66.2 bar, DF+TiO2的峰值压力在满载和150ppm时降低到57.2 bar。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Study of a Diesel Engine Performance Fueled with Different Types of Nano-Fuel.
The aim of this experimental work is to study the effect of nanoparticles added to diesel fuel on engine performance characteristic. Nano fuels are prepared by adding Al2O3 or TiO2, both with particle size less than 45nm of diesel fuel. Four doses of each type namely (25, 50, 100 and 150) ppm are prepared. These nanoparticles are blended with diesel fuel in varying volume fraction by the means of an electric mixer and an ultrasonicator. The Nano fuels are (DF+Al2O3) and (DF+TiO2). Physicochemical properties of nano fuels are measured and compared with these of neat diesel. The study shows that the addition of nanoparticles to diesel fuel improves its physical properties such as cetane number, thermal conductivity and viscosity. The influence of nanoparticles addition is very clear on the engine performance. The results show that the performance parameters are improved for example, brake thermal efficiency is increased from 19.4% for diesel to 21% and 25% for DF+Al2O3 and DF+TiO2 respectively, the brake specific fuel consumption (BSFC) is decreased by 8% and 20% for DF+Al2O3 and DF+TiO2 respectively, the brake specific energy consumption (BSFC) is decreased by 8% and 20% for DF+Al2O3 and DF+TiO2 respectively at 25ppm and 75% load. The exhaust gas temperature is 382°C for pure diesel while it is 417°C for DF+Al2O3 and 353°C for DF+TiO2. The peak pressure for pure diesel is 62 bar and it increases with DF+Al2O3 to 66.2 bar as for DF+TiO2 the peak pressure decreases to 57.2 bar at full load and 150ppm.                                                                
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信