对称邻边信息索引编码问题的最小秩

Mahesh Babu Vaddi, B. Rajan
{"title":"对称邻边信息索引编码问题的最小秩","authors":"Mahesh Babu Vaddi, B. Rajan","doi":"10.1109/ITW44776.2019.8989268","DOIUrl":null,"url":null,"abstract":"The length of an optimal scalar linear index code of a single unicast index coding problem (SUICP) is equal to the minrank of its side-information graph. A single unicast index coding problem is called symmetric neighboring and consecutive (SNC) side-information problem if it has $K$ messages and $K$ receivers, the $k\\mathrm {t}\\mathrm {h}$ receiver $R_{k}$ wanting the $k\\mathrm {t}\\mathrm {h}$ message $x_{k}$ and having the side-information $D$ messages immediately after $x_{k}$ and $U (D~\\geq ~U)$ messages immediately before $x_{k}$. Maleki, Cadambe and Jafar obtained the capacity of this SUICP(SNC) and proposed $(U+1)$-dimensional optimal length vector linear index codes by using Vandermonde matrices. However, for a ${b}$- dimensional vector linear index code, the transmitter needs to wait for $b$ realizations of each message and hence the latency introduced at the transmitter is proportional to $b$. For any given single unicast index coding problem with the side-information graph $G$, MAIS (${G}$) is used to give a lowerbound on the broadcast rate of the ICP. In this paper, we analyse the properties of minrank of SUICP(SNC) side-information graph. We derive the MAIS (${G}$) of side-information graph $G$ of SUICP(SNC). For arbitrary $K, D$ and $U$, we construct scalar linear index codes for SUICP(SNC) with length $\\displaystyle \\lceil \\frac {K}{U+1}\\rceil - \\displaystyle \\lfloor \\frac {D-U}{U+1}\\rfloor $. We obtain the minrank of SUICP(SNC) side-information graph and show that the length of the constructed scalar linear index codes is equal to minrank of SUICP(SNC) side-information graph for some combinations of K, D and ${U}$.","PeriodicalId":214379,"journal":{"name":"2019 IEEE Information Theory Workshop (ITW)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the Minrank of Symmetric and Neighboring Side-information Index Coding Problems\",\"authors\":\"Mahesh Babu Vaddi, B. Rajan\",\"doi\":\"10.1109/ITW44776.2019.8989268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The length of an optimal scalar linear index code of a single unicast index coding problem (SUICP) is equal to the minrank of its side-information graph. A single unicast index coding problem is called symmetric neighboring and consecutive (SNC) side-information problem if it has $K$ messages and $K$ receivers, the $k\\\\mathrm {t}\\\\mathrm {h}$ receiver $R_{k}$ wanting the $k\\\\mathrm {t}\\\\mathrm {h}$ message $x_{k}$ and having the side-information $D$ messages immediately after $x_{k}$ and $U (D~\\\\geq ~U)$ messages immediately before $x_{k}$. Maleki, Cadambe and Jafar obtained the capacity of this SUICP(SNC) and proposed $(U+1)$-dimensional optimal length vector linear index codes by using Vandermonde matrices. However, for a ${b}$- dimensional vector linear index code, the transmitter needs to wait for $b$ realizations of each message and hence the latency introduced at the transmitter is proportional to $b$. For any given single unicast index coding problem with the side-information graph $G$, MAIS (${G}$) is used to give a lowerbound on the broadcast rate of the ICP. In this paper, we analyse the properties of minrank of SUICP(SNC) side-information graph. We derive the MAIS (${G}$) of side-information graph $G$ of SUICP(SNC). For arbitrary $K, D$ and $U$, we construct scalar linear index codes for SUICP(SNC) with length $\\\\displaystyle \\\\lceil \\\\frac {K}{U+1}\\\\rceil - \\\\displaystyle \\\\lfloor \\\\frac {D-U}{U+1}\\\\rfloor $. We obtain the minrank of SUICP(SNC) side-information graph and show that the length of the constructed scalar linear index codes is equal to minrank of SUICP(SNC) side-information graph for some combinations of K, D and ${U}$.\",\"PeriodicalId\":214379,\"journal\":{\"name\":\"2019 IEEE Information Theory Workshop (ITW)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Information Theory Workshop (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW44776.2019.8989268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW44776.2019.8989268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

单播索引编码问题的最优标量线性索引码的长度等于它的边信息图的最小秩。单播索引编码问题,如果存在对称相邻连续侧信息问题,则称为对称相邻连续侧信息问题 $K$ 信息和 $K$ 接收器, $k\mathrm {t}\mathrm {h}$ 接收机 $R_{k}$ 想要 $k\mathrm {t}\mathrm {h}$ 信息 $x_{k}$ 还有一些侧面信息 $D$ 紧接其后的讯息 $x_{k}$ 和 $U (D~\geq ~U)$ 紧接前的讯息 $x_{k}$. Maleki, Cadambe和Jafar获得了该遂行式集成电路(SNC)的容量,并提出 $(U+1)$利用Vandermonde矩阵实现的-维最优长度向量线性索引编码。然而,对于一个 ${b}$维向量线性索引代码,需要等待发射机 $b$ 每个消息的实现以及因此在发送端引入的延迟与 $b$. 对于任意给定的单播索引编码问题的边信息图 $G$,先生。${G}$)用于给出ICP的广播速率的下限。本文分析了SUICP(SNC)边信息图的最小秩的性质。我们推导出MAIS (${G}$)的边信息图 $G$ (SNC)。对于任意的 $K, D$ 和 $U$构造了具有长度的SUICP(SNC)的标量线性索引码 $\displaystyle \lceil \frac {K}{U+1}\rceil - \displaystyle \lfloor \frac {D-U}{U+1}\rfloor $. 我们得到了SUICP(SNC)边信息图的minrank,并证明了对于K、D和的某些组合,所构造的标量线性索引码的长度等于SUICP(SNC)边信息图的minrank ${U}$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Minrank of Symmetric and Neighboring Side-information Index Coding Problems
The length of an optimal scalar linear index code of a single unicast index coding problem (SUICP) is equal to the minrank of its side-information graph. A single unicast index coding problem is called symmetric neighboring and consecutive (SNC) side-information problem if it has $K$ messages and $K$ receivers, the $k\mathrm {t}\mathrm {h}$ receiver $R_{k}$ wanting the $k\mathrm {t}\mathrm {h}$ message $x_{k}$ and having the side-information $D$ messages immediately after $x_{k}$ and $U (D~\geq ~U)$ messages immediately before $x_{k}$. Maleki, Cadambe and Jafar obtained the capacity of this SUICP(SNC) and proposed $(U+1)$-dimensional optimal length vector linear index codes by using Vandermonde matrices. However, for a ${b}$- dimensional vector linear index code, the transmitter needs to wait for $b$ realizations of each message and hence the latency introduced at the transmitter is proportional to $b$. For any given single unicast index coding problem with the side-information graph $G$, MAIS (${G}$) is used to give a lowerbound on the broadcast rate of the ICP. In this paper, we analyse the properties of minrank of SUICP(SNC) side-information graph. We derive the MAIS (${G}$) of side-information graph $G$ of SUICP(SNC). For arbitrary $K, D$ and $U$, we construct scalar linear index codes for SUICP(SNC) with length $\displaystyle \lceil \frac {K}{U+1}\rceil - \displaystyle \lfloor \frac {D-U}{U+1}\rfloor $. We obtain the minrank of SUICP(SNC) side-information graph and show that the length of the constructed scalar linear index codes is equal to minrank of SUICP(SNC) side-information graph for some combinations of K, D and ${U}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信