Lucas L. S. Sachetti, Enzo B. Cussuol, J. M. Nogueira, Vinícius F. S. Mota
{"title":"pmSensing:用于预测颗粒物监测的参与式传感网络","authors":"Lucas L. S. Sachetti, Enzo B. Cussuol, J. M. Nogueira, Vinícius F. S. Mota","doi":"10.5753/courb.2021.17112","DOIUrl":null,"url":null,"abstract":"Este trabalho apresenta uma proposta de uma rede de sensores sem fio para sensoriamento participativo, com dispositivos IoT de sensoriamento desenvolvidos especialmente para monitoramento e predição da qualidade do ar, como alternativa a estações meteorológicas de alto custo. O sistema, batizado de pmSensing, objetiva fazer a medição de material particulado. Uma validação é feita comparando os dados coletados pelo protótipo com dados das estações. A comparação mostra que os resultados são próximos, o que pode viabilizar soluções de baixo custo para o problema. O sistema ainda apresenta uma análise preditiva utilizando redes neurais recorrentes, no caso a rede LSTM-RNN, onde as predições apresentaram alta acurácia em relação aos dados reais.","PeriodicalId":408670,"journal":{"name":"Anais do V Workshop de Computação Urbana (CoUrb 2021)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"pmSensing: Uma Rede de Sensoriamento Participativo para Monitoramento Preditivo de Material Particulado\",\"authors\":\"Lucas L. S. Sachetti, Enzo B. Cussuol, J. M. Nogueira, Vinícius F. S. Mota\",\"doi\":\"10.5753/courb.2021.17112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Este trabalho apresenta uma proposta de uma rede de sensores sem fio para sensoriamento participativo, com dispositivos IoT de sensoriamento desenvolvidos especialmente para monitoramento e predição da qualidade do ar, como alternativa a estações meteorológicas de alto custo. O sistema, batizado de pmSensing, objetiva fazer a medição de material particulado. Uma validação é feita comparando os dados coletados pelo protótipo com dados das estações. A comparação mostra que os resultados são próximos, o que pode viabilizar soluções de baixo custo para o problema. O sistema ainda apresenta uma análise preditiva utilizando redes neurais recorrentes, no caso a rede LSTM-RNN, onde as predições apresentaram alta acurácia em relação aos dados reais.\",\"PeriodicalId\":408670,\"journal\":{\"name\":\"Anais do V Workshop de Computação Urbana (CoUrb 2021)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do V Workshop de Computação Urbana (CoUrb 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/courb.2021.17112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do V Workshop de Computação Urbana (CoUrb 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/courb.2021.17112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
pmSensing: Uma Rede de Sensoriamento Participativo para Monitoramento Preditivo de Material Particulado
Este trabalho apresenta uma proposta de uma rede de sensores sem fio para sensoriamento participativo, com dispositivos IoT de sensoriamento desenvolvidos especialmente para monitoramento e predição da qualidade do ar, como alternativa a estações meteorológicas de alto custo. O sistema, batizado de pmSensing, objetiva fazer a medição de material particulado. Uma validação é feita comparando os dados coletados pelo protótipo com dados das estações. A comparação mostra que os resultados são próximos, o que pode viabilizar soluções de baixo custo para o problema. O sistema ainda apresenta uma análise preditiva utilizando redes neurais recorrentes, no caso a rede LSTM-RNN, onde as predições apresentaram alta acurácia em relação aos dados reais.