建筑问题优化求解的深度学习方法研究

Phillip Roshon, Feng-Jen Yang
{"title":"建筑问题优化求解的深度学习方法研究","authors":"Phillip Roshon, Feng-Jen Yang","doi":"10.1109/CSCI54926.2021.00100","DOIUrl":null,"url":null,"abstract":"In this study, we focus on a problem domain, construction problems, for reinforcement learning systems to optimize. We relate our approach to existing research in the field of automated theorem proving and other related techniques to optimize the solutions in this domain. We expect this study can inspire more interest in the adoption of and improve the efficiency of existing production systems.","PeriodicalId":206881,"journal":{"name":"2021 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study on Deep Learning Approach to Optimize Solving Construction Problems\",\"authors\":\"Phillip Roshon, Feng-Jen Yang\",\"doi\":\"10.1109/CSCI54926.2021.00100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we focus on a problem domain, construction problems, for reinforcement learning systems to optimize. We relate our approach to existing research in the field of automated theorem proving and other related techniques to optimize the solutions in this domain. We expect this study can inspire more interest in the adoption of and improve the efficiency of existing production systems.\",\"PeriodicalId\":206881,\"journal\":{\"name\":\"2021 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCI54926.2021.00100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI54926.2021.00100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们专注于一个问题域,即构造问题,用于强化学习系统的优化。我们将我们的方法与自动化定理证明领域的现有研究和其他相关技术联系起来,以优化该领域的解决方案。我们希望这项研究能够激发人们对采用和提高现有生产系统效率的更多兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study on Deep Learning Approach to Optimize Solving Construction Problems
In this study, we focus on a problem domain, construction problems, for reinforcement learning systems to optimize. We relate our approach to existing research in the field of automated theorem proving and other related techniques to optimize the solutions in this domain. We expect this study can inspire more interest in the adoption of and improve the efficiency of existing production systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信