基于近端算子的多智能体系统分布凸非光滑优化

Qing Wang, Xianlin Zeng, Bin Xin, Jie Chen
{"title":"基于近端算子的多智能体系统分布凸非光滑优化","authors":"Qing Wang, Xianlin Zeng, Bin Xin, Jie Chen","doi":"10.1109/ICCA.2019.8899755","DOIUrl":null,"url":null,"abstract":"This paper considers a class of distributed non-differentiable convex optimization problems, in which each local cost function is composed of a twice differentiable convex function and a lower semi-continuous convex function. Motivated by the proximal operator and derivative feedback methods, continuous distributed optimization algorithms for both single-integrator and double-integrator multi-agent systems are developed to achieve distributed optimal consensus. Finally, simulation results are provided to illustrate the effectiveness of the proposed methods.","PeriodicalId":130891,"journal":{"name":"2019 IEEE 15th International Conference on Control and Automation (ICCA)","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed convex nonsmooth optimization for multi-agent system based on proximal operator\",\"authors\":\"Qing Wang, Xianlin Zeng, Bin Xin, Jie Chen\",\"doi\":\"10.1109/ICCA.2019.8899755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers a class of distributed non-differentiable convex optimization problems, in which each local cost function is composed of a twice differentiable convex function and a lower semi-continuous convex function. Motivated by the proximal operator and derivative feedback methods, continuous distributed optimization algorithms for both single-integrator and double-integrator multi-agent systems are developed to achieve distributed optimal consensus. Finally, simulation results are provided to illustrate the effectiveness of the proposed methods.\",\"PeriodicalId\":130891,\"journal\":{\"name\":\"2019 IEEE 15th International Conference on Control and Automation (ICCA)\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 15th International Conference on Control and Automation (ICCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCA.2019.8899755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 15th International Conference on Control and Automation (ICCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2019.8899755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑一类分布不可微凸优化问题,其中每个局部代价函数由一个二次可微凸函数和一个下半连续凸函数组成。在近端算子和导数反馈方法的激励下,提出了单积分和双积分多智能体系统的连续分布式优化算法,以实现分布式最优一致性。最后,通过仿真结果验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed convex nonsmooth optimization for multi-agent system based on proximal operator
This paper considers a class of distributed non-differentiable convex optimization problems, in which each local cost function is composed of a twice differentiable convex function and a lower semi-continuous convex function. Motivated by the proximal operator and derivative feedback methods, continuous distributed optimization algorithms for both single-integrator and double-integrator multi-agent systems are developed to achieve distributed optimal consensus. Finally, simulation results are provided to illustrate the effectiveness of the proposed methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信