清道夫:优化深度学习训练成本和性能的云服务

S. Tyagi
{"title":"清道夫:优化深度学习训练成本和性能的云服务","authors":"S. Tyagi","doi":"10.1109/CCGridW59191.2023.00081","DOIUrl":null,"url":null,"abstract":"Deep learning (DL) models learn non-linear functions and relationships by iteratively training on given data. To accelerate training further, data-parallel training [1] launches multiple instances of training process on separate partitions of data and periodically aggregates model updates. With the availability of VMs in the cloud, choosing the “right“ cluster configuration for data-parallel training presents non-trivial challenges. We tackle this problem by considering both the parallel and statistical efficiency of distributed training w.r.t. the cluster size configuration and batch-size in training. We build performance models to evaluate the pareto-relationship between cost and time of DL training across different cluster and batch-size configurations and develop Scavenger as a cloud service for searching optimum cloud configurations in an online, blackbox manner.","PeriodicalId":341115,"journal":{"name":"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing Workshops (CCGridW)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scavenger: A Cloud Service for Optimizing Cost and Performance of DL Training\",\"authors\":\"S. Tyagi\",\"doi\":\"10.1109/CCGridW59191.2023.00081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning (DL) models learn non-linear functions and relationships by iteratively training on given data. To accelerate training further, data-parallel training [1] launches multiple instances of training process on separate partitions of data and periodically aggregates model updates. With the availability of VMs in the cloud, choosing the “right“ cluster configuration for data-parallel training presents non-trivial challenges. We tackle this problem by considering both the parallel and statistical efficiency of distributed training w.r.t. the cluster size configuration and batch-size in training. We build performance models to evaluate the pareto-relationship between cost and time of DL training across different cluster and batch-size configurations and develop Scavenger as a cloud service for searching optimum cloud configurations in an online, blackbox manner.\",\"PeriodicalId\":341115,\"journal\":{\"name\":\"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing Workshops (CCGridW)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing Workshops (CCGridW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGridW59191.2023.00081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing Workshops (CCGridW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGridW59191.2023.00081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度学习(DL)模型通过对给定数据的迭代训练来学习非线性函数和关系。为了进一步加速训练,数据并行训练[1]在单独的数据分区上启动多个训练过程实例,并定期汇总模型更新。随着云中虚拟机的可用性,为数据并行训练选择“正确”的集群配置提出了不小的挑战。我们通过考虑分布式训练的并行效率和统计效率来解决这个问题,而不是考虑训练中的簇大小配置和批处理大小。我们建立了性能模型来评估不同集群和批处理配置的深度学习训练成本和时间之间的帕累托关系,并开发了Scavenger作为云服务,以在线黑箱方式搜索最佳云配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scavenger: A Cloud Service for Optimizing Cost and Performance of DL Training
Deep learning (DL) models learn non-linear functions and relationships by iteratively training on given data. To accelerate training further, data-parallel training [1] launches multiple instances of training process on separate partitions of data and periodically aggregates model updates. With the availability of VMs in the cloud, choosing the “right“ cluster configuration for data-parallel training presents non-trivial challenges. We tackle this problem by considering both the parallel and statistical efficiency of distributed training w.r.t. the cluster size configuration and batch-size in training. We build performance models to evaluate the pareto-relationship between cost and time of DL training across different cluster and batch-size configurations and develop Scavenger as a cloud service for searching optimum cloud configurations in an online, blackbox manner.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信