控制方案基于逆系统法在线学习BP神经网络自适应补偿

Xiang-xiang Gao, Ru Jiang, M. Gao
{"title":"控制方案基于逆系统法在线学习BP神经网络自适应补偿","authors":"Xiang-xiang Gao, Ru Jiang, M. Gao","doi":"10.1109/ICICISYS.2010.5658359","DOIUrl":null,"url":null,"abstract":"In this paper, an online BP neural network (BPNN) compensate control scheme based on inverse system method is presented for a class of single-input—single-output nonlinear systems. Firstly, the error between the α-th derivative of the system output and the pseudo-control is analyzed and a BPNN is designed to compensate the error. Then, an adaptive algorithm of the BPNN, designed based on the Lyapunov stability theory, proves that tracking error of closed-loop system and weight estimation error of BPNN are uniform ultimate boundedness. Simulations for three nonlinear systems demonstrate the validity of the proposed control scheme??","PeriodicalId":339711,"journal":{"name":"2010 IEEE International Conference on Intelligent Computing and Intelligent Systems","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Control scheme based on the inverse system method online learning BP neural network adaptive compensate\",\"authors\":\"Xiang-xiang Gao, Ru Jiang, M. Gao\",\"doi\":\"10.1109/ICICISYS.2010.5658359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an online BP neural network (BPNN) compensate control scheme based on inverse system method is presented for a class of single-input—single-output nonlinear systems. Firstly, the error between the α-th derivative of the system output and the pseudo-control is analyzed and a BPNN is designed to compensate the error. Then, an adaptive algorithm of the BPNN, designed based on the Lyapunov stability theory, proves that tracking error of closed-loop system and weight estimation error of BPNN are uniform ultimate boundedness. Simulations for three nonlinear systems demonstrate the validity of the proposed control scheme??\",\"PeriodicalId\":339711,\"journal\":{\"name\":\"2010 IEEE International Conference on Intelligent Computing and Intelligent Systems\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Intelligent Computing and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICISYS.2010.5658359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Intelligent Computing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICISYS.2010.5658359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对一类单输入-单输出非线性系统,提出了一种基于逆系统法的在线BP神经网络补偿控制方案。首先,分析了系统输出的α-阶导数与伪控制之间的误差,并设计了bp神经网络进行补偿。然后,基于Lyapunov稳定性理论设计了一种自适应BPNN算法,证明了闭环系统的跟踪误差和BPNN的权值估计误差是一致的最终有界性。对三个非线性系统的仿真验证了所提控制方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Control scheme based on the inverse system method online learning BP neural network adaptive compensate
In this paper, an online BP neural network (BPNN) compensate control scheme based on inverse system method is presented for a class of single-input—single-output nonlinear systems. Firstly, the error between the α-th derivative of the system output and the pseudo-control is analyzed and a BPNN is designed to compensate the error. Then, an adaptive algorithm of the BPNN, designed based on the Lyapunov stability theory, proves that tracking error of closed-loop system and weight estimation error of BPNN are uniform ultimate boundedness. Simulations for three nonlinear systems demonstrate the validity of the proposed control scheme??
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信