混凝土抗压强度预测的数据挖掘技术

زر يوسفصالحيوسفأبو, زر صالحيوسفأبو
{"title":"混凝土抗压强度预测的数据挖掘技术","authors":"زر يوسفصالحيوسفأبو, زر صالحيوسفأبو","doi":"10.33977/2106-000-003-006","DOIUrl":null,"url":null,"abstract":"The main aim of this research is to use data mining techniques to explore the main factors affecting the strength of concrete mix. In this research, we are interested in finding some of the factors that influence the high performance of concrete to increase the Concrete Compressive Strength (CCS) mix. We used Waikato’s Knowledge Analysis Environment (WEKA) tool and algorithms such as K-Means, Kohonen’s Self Organizing Map (KSOM) and EM to identify the most influential factors that increase the strength of the concrete mix. The results of this research showed that EM is highly capable of determining the main components that affect the compressive strength of high performance concrete mix. The other two algorithms, K-Means and KSOM, were noted to be an advanced predictive model for predicting the strength of the concrete mix.","PeriodicalId":139540,"journal":{"name":"المجلة الفلسطينية للتكنولوجيا والعلوم التطبيقية","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Data Mining Techniques For Prediction Of Concrete Compressive Strength (CCS)\",\"authors\":\"زر يوسفصالحيوسفأبو, زر صالحيوسفأبو\",\"doi\":\"10.33977/2106-000-003-006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main aim of this research is to use data mining techniques to explore the main factors affecting the strength of concrete mix. In this research, we are interested in finding some of the factors that influence the high performance of concrete to increase the Concrete Compressive Strength (CCS) mix. We used Waikato’s Knowledge Analysis Environment (WEKA) tool and algorithms such as K-Means, Kohonen’s Self Organizing Map (KSOM) and EM to identify the most influential factors that increase the strength of the concrete mix. The results of this research showed that EM is highly capable of determining the main components that affect the compressive strength of high performance concrete mix. The other two algorithms, K-Means and KSOM, were noted to be an advanced predictive model for predicting the strength of the concrete mix.\",\"PeriodicalId\":139540,\"journal\":{\"name\":\"المجلة الفلسطينية للتكنولوجيا والعلوم التطبيقية\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"المجلة الفلسطينية للتكنولوجيا والعلوم التطبيقية\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33977/2106-000-003-006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"المجلة الفلسطينية للتكنولوجيا والعلوم التطبيقية","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33977/2106-000-003-006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本研究的主要目的是利用数据挖掘技术探索影响混凝土配合比强度的主要因素。在本研究中,我们感兴趣的是寻找一些影响混凝土高性能的因素,以增加混凝土抗压强度(CCS)混合料。我们使用了Waikato的知识分析环境(WEKA)工具和算法,如K-Means、Kohonen的自组织图(KSOM)和EM,以确定提高混凝土混合强度的最具影响力的因素。研究结果表明,EM能够很好地确定影响高性能混凝土配合比抗压强度的主要成分。另外两种算法,K-Means和KSOM,被认为是预测混凝土混合强度的先进预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data Mining Techniques For Prediction Of Concrete Compressive Strength (CCS)
The main aim of this research is to use data mining techniques to explore the main factors affecting the strength of concrete mix. In this research, we are interested in finding some of the factors that influence the high performance of concrete to increase the Concrete Compressive Strength (CCS) mix. We used Waikato’s Knowledge Analysis Environment (WEKA) tool and algorithms such as K-Means, Kohonen’s Self Organizing Map (KSOM) and EM to identify the most influential factors that increase the strength of the concrete mix. The results of this research showed that EM is highly capable of determining the main components that affect the compressive strength of high performance concrete mix. The other two algorithms, K-Means and KSOM, were noted to be an advanced predictive model for predicting the strength of the concrete mix.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信