MMOT:运动感知多目标跟踪与光流

Haodong Liu, Tianyang Xu, Xiaojun Wu
{"title":"MMOT:运动感知多目标跟踪与光流","authors":"Haodong Liu, Tianyang Xu, Xiaojun Wu","doi":"10.1145/3581807.3581824","DOIUrl":null,"url":null,"abstract":"Modern multi-object tracking (MOT) benefited from recent advances in deep neural network and large video datasets. However, there are still some challenges impeding further improvement of the tracking performance, including complex background, fast motion and occlusion scenes. In this paper, we propose a new framework which employs motion information with optical flow, enable directly distinguishing the foreground and background regions. The proposed end-to-end network consists of two branches to separately model the spatial feature representations and optical flow motion patterns. We propose different fusion mechanism by combining the motion clues and appearance information. The results on MOT17 dataset show that our method is an effective mechanism in modeling temporal-spatial information.","PeriodicalId":292813,"journal":{"name":"Proceedings of the 2022 11th International Conference on Computing and Pattern Recognition","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MMOT: Motion-Aware Multi-Object Tracking with Optical Flow\",\"authors\":\"Haodong Liu, Tianyang Xu, Xiaojun Wu\",\"doi\":\"10.1145/3581807.3581824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern multi-object tracking (MOT) benefited from recent advances in deep neural network and large video datasets. However, there are still some challenges impeding further improvement of the tracking performance, including complex background, fast motion and occlusion scenes. In this paper, we propose a new framework which employs motion information with optical flow, enable directly distinguishing the foreground and background regions. The proposed end-to-end network consists of two branches to separately model the spatial feature representations and optical flow motion patterns. We propose different fusion mechanism by combining the motion clues and appearance information. The results on MOT17 dataset show that our method is an effective mechanism in modeling temporal-spatial information.\",\"PeriodicalId\":292813,\"journal\":{\"name\":\"Proceedings of the 2022 11th International Conference on Computing and Pattern Recognition\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 11th International Conference on Computing and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3581807.3581824\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 11th International Conference on Computing and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3581807.3581824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现代多目标跟踪(MOT)得益于深度神经网络和大型视频数据集的最新进展。但是,在背景复杂、运动速度快、遮挡场景等方面,仍然存在一些阻碍跟踪性能进一步提高的问题。本文提出了一种利用运动信息和光流来直接区分前景和背景区域的新框架。提出的端到端网络由两个分支组成,分别对空间特征表示和光流运动模式进行建模。结合运动线索和外观信息,提出了不同的融合机制。在MOT17数据集上的结果表明,该方法是一种有效的时空信息建模机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MMOT: Motion-Aware Multi-Object Tracking with Optical Flow
Modern multi-object tracking (MOT) benefited from recent advances in deep neural network and large video datasets. However, there are still some challenges impeding further improvement of the tracking performance, including complex background, fast motion and occlusion scenes. In this paper, we propose a new framework which employs motion information with optical flow, enable directly distinguishing the foreground and background regions. The proposed end-to-end network consists of two branches to separately model the spatial feature representations and optical flow motion patterns. We propose different fusion mechanism by combining the motion clues and appearance information. The results on MOT17 dataset show that our method is an effective mechanism in modeling temporal-spatial information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信