基于层次特征去相关的深度可伸缩图像压缩

Zongyu Guo, Zhizheng Zhang, Zhibo Chen
{"title":"基于层次特征去相关的深度可伸缩图像压缩","authors":"Zongyu Guo, Zhizheng Zhang, Zhibo Chen","doi":"10.1109/PCS48520.2019.8954536","DOIUrl":null,"url":null,"abstract":"Scalable image compression allows reconstructing complete images through partially decoding. It plays an important role for image transmission and storage. In this paper, we study the problem of feature decorrelation for Deep Neural Network (DNN) based image codec. Inspired by self-attention mechanism [1], we design a transformer-based decorrelation unit (DU) and adopt it in our scalable image compression framework to reduce the redundancy of feature representations at different levels. Experimental results demonstrate that proposed framework outperforms the state-of-the-art DNN-based scalable image codec and conventional scalable image codecs in terms of MS-SSIM. We also conduct ablation experiments which explicitly verify the effectiveness of decorrelation unit in our scheme.","PeriodicalId":237809,"journal":{"name":"2019 Picture Coding Symposium (PCS)","volume":"238 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Deep Scalable Image Compression via Hierarchical Feature Decorrelation\",\"authors\":\"Zongyu Guo, Zhizheng Zhang, Zhibo Chen\",\"doi\":\"10.1109/PCS48520.2019.8954536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scalable image compression allows reconstructing complete images through partially decoding. It plays an important role for image transmission and storage. In this paper, we study the problem of feature decorrelation for Deep Neural Network (DNN) based image codec. Inspired by self-attention mechanism [1], we design a transformer-based decorrelation unit (DU) and adopt it in our scalable image compression framework to reduce the redundancy of feature representations at different levels. Experimental results demonstrate that proposed framework outperforms the state-of-the-art DNN-based scalable image codec and conventional scalable image codecs in terms of MS-SSIM. We also conduct ablation experiments which explicitly verify the effectiveness of decorrelation unit in our scheme.\",\"PeriodicalId\":237809,\"journal\":{\"name\":\"2019 Picture Coding Symposium (PCS)\",\"volume\":\"238 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Picture Coding Symposium (PCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PCS48520.2019.8954536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Picture Coding Symposium (PCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS48520.2019.8954536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

可扩展的图像压缩允许通过部分解码重建完整的图像。它在图像传输和存储中起着重要的作用。研究了基于深度神经网络(DNN)的图像编解码器的特征去相关问题。受自关注机制[1]的启发,我们设计了一种基于变压器的去相关单元(DU),并将其应用于我们的可扩展图像压缩框架中,以减少不同层次特征表示的冗余。实验结果表明,该框架在MS-SSIM方面优于当前基于dnn的可扩展图像编解码器和传统的可扩展图像编解码器。我们还进行了消融实验,明确地验证了该方案中去相关单元的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Scalable Image Compression via Hierarchical Feature Decorrelation
Scalable image compression allows reconstructing complete images through partially decoding. It plays an important role for image transmission and storage. In this paper, we study the problem of feature decorrelation for Deep Neural Network (DNN) based image codec. Inspired by self-attention mechanism [1], we design a transformer-based decorrelation unit (DU) and adopt it in our scalable image compression framework to reduce the redundancy of feature representations at different levels. Experimental results demonstrate that proposed framework outperforms the state-of-the-art DNN-based scalable image codec and conventional scalable image codecs in terms of MS-SSIM. We also conduct ablation experiments which explicitly verify the effectiveness of decorrelation unit in our scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信