Yuchen Yang, Haolin Yuan, Bo Hui, N. Gong, Neil Fendley, P. Burlina, Yinzhi Cao
{"title":"通过客户端级输入扰动加强联邦学习抵御隶属关系推理攻击","authors":"Yuchen Yang, Haolin Yuan, Bo Hui, N. Gong, Neil Fendley, P. Burlina, Yinzhi Cao","doi":"10.1109/DSN58367.2023.00037","DOIUrl":null,"url":null,"abstract":"Membership inference (MI) attacks are more diverse in a Federated Learning (FL) setting, because an adversary may be either an FL client, a server, or an external attacker. Existing defenses against MI attacks rely on perturbations to either the model's output predictions or the training process. However, output perturbations are ineffective in an FL setting, because a malicious server can access the model without output perturbation while training perturbations struggle to achieve a good utility. This paper proposes a novel defense, called CIP, to fortify FL against MI attacks via a client-level input perturbation during training and inference procedures. The key insight is to shift each client's local data distribution via a personalized perturbation to get a shifted model. CIP achieves a good balance between privacy and utility. Our evaluation shows that CIP causes accuracy to drop at most 0.7% while reducing attacks to random guessing.","PeriodicalId":427725,"journal":{"name":"2023 53rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fortifying Federated Learning against Membership Inference Attacks via Client-level Input Perturbation\",\"authors\":\"Yuchen Yang, Haolin Yuan, Bo Hui, N. Gong, Neil Fendley, P. Burlina, Yinzhi Cao\",\"doi\":\"10.1109/DSN58367.2023.00037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Membership inference (MI) attacks are more diverse in a Federated Learning (FL) setting, because an adversary may be either an FL client, a server, or an external attacker. Existing defenses against MI attacks rely on perturbations to either the model's output predictions or the training process. However, output perturbations are ineffective in an FL setting, because a malicious server can access the model without output perturbation while training perturbations struggle to achieve a good utility. This paper proposes a novel defense, called CIP, to fortify FL against MI attacks via a client-level input perturbation during training and inference procedures. The key insight is to shift each client's local data distribution via a personalized perturbation to get a shifted model. CIP achieves a good balance between privacy and utility. Our evaluation shows that CIP causes accuracy to drop at most 0.7% while reducing attacks to random guessing.\",\"PeriodicalId\":427725,\"journal\":{\"name\":\"2023 53rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 53rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSN58367.2023.00037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 53rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSN58367.2023.00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fortifying Federated Learning against Membership Inference Attacks via Client-level Input Perturbation
Membership inference (MI) attacks are more diverse in a Federated Learning (FL) setting, because an adversary may be either an FL client, a server, or an external attacker. Existing defenses against MI attacks rely on perturbations to either the model's output predictions or the training process. However, output perturbations are ineffective in an FL setting, because a malicious server can access the model without output perturbation while training perturbations struggle to achieve a good utility. This paper proposes a novel defense, called CIP, to fortify FL against MI attacks via a client-level input perturbation during training and inference procedures. The key insight is to shift each client's local data distribution via a personalized perturbation to get a shifted model. CIP achieves a good balance between privacy and utility. Our evaluation shows that CIP causes accuracy to drop at most 0.7% while reducing attacks to random guessing.