{"title":"在线论坛的主题检测","authors":"F. Chen, Juan Du, Weining Qian, Aoying Zhou","doi":"10.1109/WISA.2012.15","DOIUrl":null,"url":null,"abstract":"Topic detection is an hot research in the area of information retrieval. However, the new environment of Internet, the content of which are usually user-generated, asks for new requirements and brings new challenges. Topic detection has to resolve the problem of its lower quality and large amount of noisy. This paper not only provides a solution for detecting hot topics, but also giving its semantic descriptions as result. Our method integrates two kinds of term features (local features and global features), and use single pass clustering to perform topic detection in a web forum. It's efficient to filter non-topic documents and get readable descriptions of topic in our system. By comparison with baseline and topic model LDA, our method gets better performance and readable result.","PeriodicalId":313228,"journal":{"name":"2012 Ninth Web Information Systems and Applications Conference","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Topic Detection over Online Forum\",\"authors\":\"F. Chen, Juan Du, Weining Qian, Aoying Zhou\",\"doi\":\"10.1109/WISA.2012.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Topic detection is an hot research in the area of information retrieval. However, the new environment of Internet, the content of which are usually user-generated, asks for new requirements and brings new challenges. Topic detection has to resolve the problem of its lower quality and large amount of noisy. This paper not only provides a solution for detecting hot topics, but also giving its semantic descriptions as result. Our method integrates two kinds of term features (local features and global features), and use single pass clustering to perform topic detection in a web forum. It's efficient to filter non-topic documents and get readable descriptions of topic in our system. By comparison with baseline and topic model LDA, our method gets better performance and readable result.\",\"PeriodicalId\":313228,\"journal\":{\"name\":\"2012 Ninth Web Information Systems and Applications Conference\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Ninth Web Information Systems and Applications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISA.2012.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Ninth Web Information Systems and Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISA.2012.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Topic detection is an hot research in the area of information retrieval. However, the new environment of Internet, the content of which are usually user-generated, asks for new requirements and brings new challenges. Topic detection has to resolve the problem of its lower quality and large amount of noisy. This paper not only provides a solution for detecting hot topics, but also giving its semantic descriptions as result. Our method integrates two kinds of term features (local features and global features), and use single pass clustering to perform topic detection in a web forum. It's efficient to filter non-topic documents and get readable descriptions of topic in our system. By comparison with baseline and topic model LDA, our method gets better performance and readable result.