基于机器学习的非正交卫星通信灵活载荷功率资源分配

Yazhou Zhu, C. Hofmann, A. Knopp
{"title":"基于机器学习的非正交卫星通信灵活载荷功率资源分配","authors":"Yazhou Zhu, C. Hofmann, A. Knopp","doi":"10.1109/GLOBECOM48099.2022.10000745","DOIUrl":null,"url":null,"abstract":"To meet the actual traffic demand, this work applies machine learning-based flexible payload power resource-allocation for non-orthogonal SATCOM. Specifically, a tailored deep neural network (DNN) architecture with a customized loss function is trained to intelligently allocate payload power resources among both the beams and users, by learning the undercover structure of its input (i.e., unsupervised learning). Since the DNN-based scheme doesn't need signaling and real-time information exchange between the gateways and the users, it can significantly decrease the implementation complexity by employing the channel statistics of users in multibeam SATCOM. Moreover, the DNN-based scheme can be trained as a universal approximator of the payload power resource-allocation agent for any unseen satellite channel and has the potential for a real-time operation with reduced implementation complexity, compared to the mathematical optimization-based scheme. Numerical results show the DNN-based scheme achieves comparable performance.","PeriodicalId":313199,"journal":{"name":"GLOBECOM 2022 - 2022 IEEE Global Communications Conference","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning-based Flexible Payload Power Resource Allocation for Non-orthogonal SATCOM\",\"authors\":\"Yazhou Zhu, C. Hofmann, A. Knopp\",\"doi\":\"10.1109/GLOBECOM48099.2022.10000745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To meet the actual traffic demand, this work applies machine learning-based flexible payload power resource-allocation for non-orthogonal SATCOM. Specifically, a tailored deep neural network (DNN) architecture with a customized loss function is trained to intelligently allocate payload power resources among both the beams and users, by learning the undercover structure of its input (i.e., unsupervised learning). Since the DNN-based scheme doesn't need signaling and real-time information exchange between the gateways and the users, it can significantly decrease the implementation complexity by employing the channel statistics of users in multibeam SATCOM. Moreover, the DNN-based scheme can be trained as a universal approximator of the payload power resource-allocation agent for any unseen satellite channel and has the potential for a real-time operation with reduced implementation complexity, compared to the mathematical optimization-based scheme. Numerical results show the DNN-based scheme achieves comparable performance.\",\"PeriodicalId\":313199,\"journal\":{\"name\":\"GLOBECOM 2022 - 2022 IEEE Global Communications Conference\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GLOBECOM 2022 - 2022 IEEE Global Communications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBECOM48099.2022.10000745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBECOM 2022 - 2022 IEEE Global Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM48099.2022.10000745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为满足实际业务需求,将基于机器学习的非正交卫星通信灵活载荷功率资源分配方法应用于卫星通信系统。具体而言,通过学习其输入的隐藏结构(即无监督学习),训练具有自定义损失函数的定制深度神经网络(DNN)架构,在波束和用户之间智能地分配有效载荷功率资源。由于基于dnn的方案不需要网关和用户之间进行信令和实时信息交换,因此利用多波束卫星通信中用户的信道统计信息可以显著降低实现的复杂性。此外,与基于数学优化的方案相比,基于dnn的方案可以作为任何未知卫星信道的有效载荷功率资源分配代理的通用逼近器进行训练,并且具有降低实现复杂性的实时操作潜力。数值结果表明,基于dnn的方案具有相当的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning-based Flexible Payload Power Resource Allocation for Non-orthogonal SATCOM
To meet the actual traffic demand, this work applies machine learning-based flexible payload power resource-allocation for non-orthogonal SATCOM. Specifically, a tailored deep neural network (DNN) architecture with a customized loss function is trained to intelligently allocate payload power resources among both the beams and users, by learning the undercover structure of its input (i.e., unsupervised learning). Since the DNN-based scheme doesn't need signaling and real-time information exchange between the gateways and the users, it can significantly decrease the implementation complexity by employing the channel statistics of users in multibeam SATCOM. Moreover, the DNN-based scheme can be trained as a universal approximator of the payload power resource-allocation agent for any unseen satellite channel and has the potential for a real-time operation with reduced implementation complexity, compared to the mathematical optimization-based scheme. Numerical results show the DNN-based scheme achieves comparable performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信