基于隐马尔可夫模型的广义名称实体识别器

J. Colmenar, M. Abánades, Fernando Poza, Diego Martín, Alfredo Cuesta-Infante, Alberto Herrán, J. Hidalgo
{"title":"基于隐马尔可夫模型的广义名称实体识别器","authors":"J. Colmenar, M. Abánades, Fernando Poza, Diego Martín, Alfredo Cuesta-Infante, Alberto Herrán, J. Hidalgo","doi":"10.1109/ISDA.2011.6121781","DOIUrl":null,"url":null,"abstract":"This paper presents a Named Entity Recognition (NER) system based on Hidden Markov Models. The system design is language independent, and the target language and scope of the NER is determined by the training corpus. The NER is formed by two subsystems that detect and label the entities independently. Each subsystem implements a different approach of that statistical theory, showing that each component may complement the results of the other one. Unlike most of the previous works, two labels are returned when the components provide different results. This redundancy is an advantage when human supervision is mandatory at the end of the process such as in intelligence environments.","PeriodicalId":433207,"journal":{"name":"2011 11th International Conference on Intelligent Systems Design and Applications","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On a generalized name entity recognizer based on Hidden Markov Models\",\"authors\":\"J. Colmenar, M. Abánades, Fernando Poza, Diego Martín, Alfredo Cuesta-Infante, Alberto Herrán, J. Hidalgo\",\"doi\":\"10.1109/ISDA.2011.6121781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a Named Entity Recognition (NER) system based on Hidden Markov Models. The system design is language independent, and the target language and scope of the NER is determined by the training corpus. The NER is formed by two subsystems that detect and label the entities independently. Each subsystem implements a different approach of that statistical theory, showing that each component may complement the results of the other one. Unlike most of the previous works, two labels are returned when the components provide different results. This redundancy is an advantage when human supervision is mandatory at the end of the process such as in intelligence environments.\",\"PeriodicalId\":433207,\"journal\":{\"name\":\"2011 11th International Conference on Intelligent Systems Design and Applications\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 11th International Conference on Intelligent Systems Design and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2011.6121781\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 11th International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2011.6121781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于隐马尔可夫模型的命名实体识别(NER)系统。系统设计与语言无关,NER的目标语言和范围由训练语料库确定。NER由两个独立检测和标记实体的子系统组成。每个子系统实现该统计理论的不同方法,表明每个组件可以补充另一个组件的结果。与前面的大多数工作不同,当组件提供不同的结果时,将返回两个标签。这种冗余是一个优势,当人工监督是强制性的,在过程的最后,如在智能环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a generalized name entity recognizer based on Hidden Markov Models
This paper presents a Named Entity Recognition (NER) system based on Hidden Markov Models. The system design is language independent, and the target language and scope of the NER is determined by the training corpus. The NER is formed by two subsystems that detect and label the entities independently. Each subsystem implements a different approach of that statistical theory, showing that each component may complement the results of the other one. Unlike most of the previous works, two labels are returned when the components provide different results. This redundancy is an advantage when human supervision is mandatory at the end of the process such as in intelligence environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信