基于人工神经网络的混合动力汽车估计与控制

Wang Dazhi, Yang Jie, Yang Qing, Wu Dongsheng, Jin Hui
{"title":"基于人工神经网络的混合动力汽车估计与控制","authors":"Wang Dazhi, Yang Jie, Yang Qing, Wu Dongsheng, Jin Hui","doi":"10.1109/ICIEA.2007.4318365","DOIUrl":null,"url":null,"abstract":"This paper proposes a hybrid adaptive control strategy to control a hybrid electric vehicle (HEV), and two neural-network-based adaptive estimators of torque and speed, which are of both induction motor (IM) and engine, are proposed too. In order to control HEV effectively, the configuration of the hybrid control system combines a fuzzy neural network (FNN) controller and an adaptive compensated controller. The FNN controller is the main controller to track the expected value of the system; and the compensated controller to compensate the uncertainties of the system; the compensated control law is derived using Lyapunov stability theory. The proposed estimator of IM includes two recurrent neural networks (RNN), one is used to estimate rotor flux and speed, the other is used to estimate stator current. The effectiveness of the proposed control strategy is verified by the simulation results.","PeriodicalId":231682,"journal":{"name":"2007 2nd IEEE Conference on Industrial Electronics and Applications","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Estimation and Control of Hybrid Electric Vehicle using Artificial Neural Networks\",\"authors\":\"Wang Dazhi, Yang Jie, Yang Qing, Wu Dongsheng, Jin Hui\",\"doi\":\"10.1109/ICIEA.2007.4318365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a hybrid adaptive control strategy to control a hybrid electric vehicle (HEV), and two neural-network-based adaptive estimators of torque and speed, which are of both induction motor (IM) and engine, are proposed too. In order to control HEV effectively, the configuration of the hybrid control system combines a fuzzy neural network (FNN) controller and an adaptive compensated controller. The FNN controller is the main controller to track the expected value of the system; and the compensated controller to compensate the uncertainties of the system; the compensated control law is derived using Lyapunov stability theory. The proposed estimator of IM includes two recurrent neural networks (RNN), one is used to estimate rotor flux and speed, the other is used to estimate stator current. The effectiveness of the proposed control strategy is verified by the simulation results.\",\"PeriodicalId\":231682,\"journal\":{\"name\":\"2007 2nd IEEE Conference on Industrial Electronics and Applications\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 2nd IEEE Conference on Industrial Electronics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEA.2007.4318365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 2nd IEEE Conference on Industrial Electronics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2007.4318365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

针对混合动力汽车,提出了一种混合自适应控制策略,并提出了两种基于神经网络的转矩和转速自适应估计器,分别适用于感应电动机和发动机。为了有效地控制混合动力汽车,混合控制系统的配置将模糊神经网络(FNN)控制器和自适应补偿控制器相结合。FNN控制器是跟踪系统期望值的主要控制器;并采用补偿控制器对系统的不确定性进行补偿;利用李雅普诺夫稳定性理论推导了补偿控制律。该估计器包括两个递归神经网络(RNN),一个用于估计转子磁链和转速,另一个用于估计定子电流。仿真结果验证了所提控制策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation and Control of Hybrid Electric Vehicle using Artificial Neural Networks
This paper proposes a hybrid adaptive control strategy to control a hybrid electric vehicle (HEV), and two neural-network-based adaptive estimators of torque and speed, which are of both induction motor (IM) and engine, are proposed too. In order to control HEV effectively, the configuration of the hybrid control system combines a fuzzy neural network (FNN) controller and an adaptive compensated controller. The FNN controller is the main controller to track the expected value of the system; and the compensated controller to compensate the uncertainties of the system; the compensated control law is derived using Lyapunov stability theory. The proposed estimator of IM includes two recurrent neural networks (RNN), one is used to estimate rotor flux and speed, the other is used to estimate stator current. The effectiveness of the proposed control strategy is verified by the simulation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信