{"title":"水文回归期的估计","authors":"M. Lefebvre","doi":"10.21926/aeer.2204049","DOIUrl":null,"url":null,"abstract":"A filtered Poisson process is proposed as a model for river flows. With the help of real-life data, the model parameters are estimated. Mathematical formulae are derived in order to estimate the various return periods of the river. An application to two rivers shows that the point estimates are very close to the corresponding values computed by hydrologists, based on historical data. Moreover, by modifying the values of the parameters in the model, we can see the potential effects of climate change on the return periods.","PeriodicalId":198785,"journal":{"name":"Advances in Environmental and Engineering Research","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of the Return Periods in Hydrology\",\"authors\":\"M. Lefebvre\",\"doi\":\"10.21926/aeer.2204049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A filtered Poisson process is proposed as a model for river flows. With the help of real-life data, the model parameters are estimated. Mathematical formulae are derived in order to estimate the various return periods of the river. An application to two rivers shows that the point estimates are very close to the corresponding values computed by hydrologists, based on historical data. Moreover, by modifying the values of the parameters in the model, we can see the potential effects of climate change on the return periods.\",\"PeriodicalId\":198785,\"journal\":{\"name\":\"Advances in Environmental and Engineering Research\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Environmental and Engineering Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21926/aeer.2204049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Environmental and Engineering Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21926/aeer.2204049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A filtered Poisson process is proposed as a model for river flows. With the help of real-life data, the model parameters are estimated. Mathematical formulae are derived in order to estimate the various return periods of the river. An application to two rivers shows that the point estimates are very close to the corresponding values computed by hydrologists, based on historical data. Moreover, by modifying the values of the parameters in the model, we can see the potential effects of climate change on the return periods.