Hepatika Zidny Ilmadina, Muhammad Naufal, Dega Surono Wibowo
{"title":"基于改进的预训练模型MobileNetV2和ResNet50的哈欠睡意检测","authors":"Hepatika Zidny Ilmadina, Muhammad Naufal, Dega Surono Wibowo","doi":"10.30812/matrik.v22i3.2785","DOIUrl":null,"url":null,"abstract":"Traffic accidents are fatal events that need special attention. According to research by the National Transportation Safety Committee, 80% of traffic accidents are caused by human error, one of which is tired and drowsy drivers. The brain can interpret the vital fatigue of a drowsy driver sign as yawning. Therefore, yawning detection for preventing drowsy drivers’ imprudent can be developed using computer vision. This method is easy to implement and does not affect the driver when handling a vehicle. The research aimed to detect drowsy drivers based on facial expression changes of yawning by combining the Haar Cascade classifier and a modified pre-trained model, MobileNetV2 and ResNet50. Both proposed models accurately detected real-time images using a camera. The analysis showed that the yawning detection model based on the ResNet50 algorithm is more reliable, with the model obtaining 99% of accuracy. Furthermore, ResNet50 demonstrated reproducible outcomes for yawning detection, considering having good training capabilities and overall evaluation results.","PeriodicalId":364657,"journal":{"name":"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Drowsiness Detection Based on Yawning Using Modified Pre-trained Model MobileNetV2 and ResNet50\",\"authors\":\"Hepatika Zidny Ilmadina, Muhammad Naufal, Dega Surono Wibowo\",\"doi\":\"10.30812/matrik.v22i3.2785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic accidents are fatal events that need special attention. According to research by the National Transportation Safety Committee, 80% of traffic accidents are caused by human error, one of which is tired and drowsy drivers. The brain can interpret the vital fatigue of a drowsy driver sign as yawning. Therefore, yawning detection for preventing drowsy drivers’ imprudent can be developed using computer vision. This method is easy to implement and does not affect the driver when handling a vehicle. The research aimed to detect drowsy drivers based on facial expression changes of yawning by combining the Haar Cascade classifier and a modified pre-trained model, MobileNetV2 and ResNet50. Both proposed models accurately detected real-time images using a camera. The analysis showed that the yawning detection model based on the ResNet50 algorithm is more reliable, with the model obtaining 99% of accuracy. Furthermore, ResNet50 demonstrated reproducible outcomes for yawning detection, considering having good training capabilities and overall evaluation results.\",\"PeriodicalId\":364657,\"journal\":{\"name\":\"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30812/matrik.v22i3.2785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30812/matrik.v22i3.2785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Drowsiness Detection Based on Yawning Using Modified Pre-trained Model MobileNetV2 and ResNet50
Traffic accidents are fatal events that need special attention. According to research by the National Transportation Safety Committee, 80% of traffic accidents are caused by human error, one of which is tired and drowsy drivers. The brain can interpret the vital fatigue of a drowsy driver sign as yawning. Therefore, yawning detection for preventing drowsy drivers’ imprudent can be developed using computer vision. This method is easy to implement and does not affect the driver when handling a vehicle. The research aimed to detect drowsy drivers based on facial expression changes of yawning by combining the Haar Cascade classifier and a modified pre-trained model, MobileNetV2 and ResNet50. Both proposed models accurately detected real-time images using a camera. The analysis showed that the yawning detection model based on the ResNet50 algorithm is more reliable, with the model obtaining 99% of accuracy. Furthermore, ResNet50 demonstrated reproducible outcomes for yawning detection, considering having good training capabilities and overall evaluation results.