基于算法分类的可视化分析

J. Johansson, M. Jern, R. Treloar, Mattias Jansson
{"title":"基于算法分类的可视化分析","authors":"J. Johansson, M. Jern, R. Treloar, Mattias Jansson","doi":"10.1109/IV.2003.1217962","DOIUrl":null,"url":null,"abstract":"Extracting actionable insight from large high dimensional data sets, and its use for more effective decision-making, has become a pervasive problem across many fields in research and industry. We describe an investigation of the application of tightly coupled statistical and visual analysis techniques to this task. The approach we choose is \"unsupervised learning\" where we investigate the advantages offered by close coupling of the self-organizing map algorithm with new combinations of visualization components and techniques for interactivity.","PeriodicalId":259374,"journal":{"name":"Proceedings on Seventh International Conference on Information Visualization, 2003. IV 2003.","volume":"314 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Visual analysis based on algorithmic classification\",\"authors\":\"J. Johansson, M. Jern, R. Treloar, Mattias Jansson\",\"doi\":\"10.1109/IV.2003.1217962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extracting actionable insight from large high dimensional data sets, and its use for more effective decision-making, has become a pervasive problem across many fields in research and industry. We describe an investigation of the application of tightly coupled statistical and visual analysis techniques to this task. The approach we choose is \\\"unsupervised learning\\\" where we investigate the advantages offered by close coupling of the self-organizing map algorithm with new combinations of visualization components and techniques for interactivity.\",\"PeriodicalId\":259374,\"journal\":{\"name\":\"Proceedings on Seventh International Conference on Information Visualization, 2003. IV 2003.\",\"volume\":\"314 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings on Seventh International Conference on Information Visualization, 2003. IV 2003.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IV.2003.1217962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings on Seventh International Conference on Information Visualization, 2003. IV 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IV.2003.1217962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

从大型高维数据集中提取可操作的见解,并将其用于更有效的决策,已经成为研究和工业中许多领域的普遍问题。我们描述了对紧密耦合统计和可视化分析技术在这项任务中的应用的调查。我们选择的方法是“无监督学习”,我们研究了自组织地图算法与可视化组件和交互性技术的新组合紧密耦合所提供的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual analysis based on algorithmic classification
Extracting actionable insight from large high dimensional data sets, and its use for more effective decision-making, has become a pervasive problem across many fields in research and industry. We describe an investigation of the application of tightly coupled statistical and visual analysis techniques to this task. The approach we choose is "unsupervised learning" where we investigate the advantages offered by close coupling of the self-organizing map algorithm with new combinations of visualization components and techniques for interactivity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信