波动介质中波的束和理论。第一部分:光束间散射矩阵

Matan Leibobich, E. Heyman
{"title":"波动介质中波的束和理论。第一部分:光束间散射矩阵","authors":"Matan Leibobich, E. Heyman","doi":"10.1109/URSI-EMTS.2016.7571400","DOIUrl":null,"url":null,"abstract":"We present a novel beam summation (BS) formulation for tracking wave fields in weakly fluctuating media. The overall strategy is to express the field in the medium as a discrete phase-space spectrum of beam waves, and to expand the local scattering excited by the interaction of each beam with the medium using the same beam set. Since the beams are localized in the spatial-spectral phase-space, the resulting beam-to-beam (B2B) scattering coefficients depend directly on the local spectral properties of the fluctuations, as a local alternative to the conventional plane wave scattering operator. This strategy is implemented by introducing the novel concept of propagating beam frame (PBF), a phase-space set of beam propagators that can be used as an over complete frame for a local expansion of the field and its interaction with the medium. This set constitute, in fact, a novel extension of the windowed Fourier Transform (WFT) frame. A key feature of this method is that it utilizes the same beam skeleton for all frequencies in the band. In this paper we derive this formulation and in particular we derive the closed form expressions for the B2B scattering matrix.","PeriodicalId":400853,"journal":{"name":"2016 URSI International Symposium on Electromagnetic Theory (EMTS)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Beam summation theory for waves in fluctuating media. Part I: The beam-to-beam scattering matrix\",\"authors\":\"Matan Leibobich, E. Heyman\",\"doi\":\"10.1109/URSI-EMTS.2016.7571400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel beam summation (BS) formulation for tracking wave fields in weakly fluctuating media. The overall strategy is to express the field in the medium as a discrete phase-space spectrum of beam waves, and to expand the local scattering excited by the interaction of each beam with the medium using the same beam set. Since the beams are localized in the spatial-spectral phase-space, the resulting beam-to-beam (B2B) scattering coefficients depend directly on the local spectral properties of the fluctuations, as a local alternative to the conventional plane wave scattering operator. This strategy is implemented by introducing the novel concept of propagating beam frame (PBF), a phase-space set of beam propagators that can be used as an over complete frame for a local expansion of the field and its interaction with the medium. This set constitute, in fact, a novel extension of the windowed Fourier Transform (WFT) frame. A key feature of this method is that it utilizes the same beam skeleton for all frequencies in the band. In this paper we derive this formulation and in particular we derive the closed form expressions for the B2B scattering matrix.\",\"PeriodicalId\":400853,\"journal\":{\"name\":\"2016 URSI International Symposium on Electromagnetic Theory (EMTS)\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 URSI International Symposium on Electromagnetic Theory (EMTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/URSI-EMTS.2016.7571400\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 URSI International Symposium on Electromagnetic Theory (EMTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URSI-EMTS.2016.7571400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种用于弱波动介质中跟踪波场的波束求和公式。总体策略是将介质中的场表示为波束波的离散相空间谱,并使用相同的波束集展开各波束与介质相互作用所激发的局部散射。由于波束在空间光谱相空间中定位,因此得到的波束间(B2B)散射系数直接取决于波动的局部光谱特性,作为传统平面波散射算子的局部替代。该策略通过引入传播束框架(PBF)的新概念来实现,传播束框架是一组束传播器的相空间集合,可以用作场的局部扩展及其与介质的相互作用的过完整框架。实际上,这个集合构成了加窗傅里叶变换(WFT)框架的一个新的扩展。该方法的一个关键特点是它对频带内的所有频率使用相同的波束骨架。本文推导了这一公式,特别推导了B2B散射矩阵的封闭形式表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Beam summation theory for waves in fluctuating media. Part I: The beam-to-beam scattering matrix
We present a novel beam summation (BS) formulation for tracking wave fields in weakly fluctuating media. The overall strategy is to express the field in the medium as a discrete phase-space spectrum of beam waves, and to expand the local scattering excited by the interaction of each beam with the medium using the same beam set. Since the beams are localized in the spatial-spectral phase-space, the resulting beam-to-beam (B2B) scattering coefficients depend directly on the local spectral properties of the fluctuations, as a local alternative to the conventional plane wave scattering operator. This strategy is implemented by introducing the novel concept of propagating beam frame (PBF), a phase-space set of beam propagators that can be used as an over complete frame for a local expansion of the field and its interaction with the medium. This set constitute, in fact, a novel extension of the windowed Fourier Transform (WFT) frame. A key feature of this method is that it utilizes the same beam skeleton for all frequencies in the band. In this paper we derive this formulation and in particular we derive the closed form expressions for the B2B scattering matrix.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信