希尔伯特函数,代数提取器和递归傅立叶采样

Zachary Remscrim
{"title":"希尔伯特函数,代数提取器和递归傅立叶采样","authors":"Zachary Remscrim","doi":"10.1109/FOCS.2016.29","DOIUrl":null,"url":null,"abstract":"In this paper, we apply tools from algebraic geometry to prove new results concerning extractors for algebraic sets, the recursive Fourier sampling problem, and VC dimension. We present a new construction of an extractor which works for algebraic sets defined by polynomials over GF(2) of substantially higher degree than the current state-of-the-art construction. We also exactly determine the GF(2)-polynomial degree of the recursive Fourier sampling problem and use this to provide new partial results towards a circuit lower bound for this problem. Finally, we answer a question concerning VC dimension, interpolation degree and the Hilbert function.","PeriodicalId":414001,"journal":{"name":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"The Hilbert Function, Algebraic Extractors, and Recursive Fourier Sampling\",\"authors\":\"Zachary Remscrim\",\"doi\":\"10.1109/FOCS.2016.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we apply tools from algebraic geometry to prove new results concerning extractors for algebraic sets, the recursive Fourier sampling problem, and VC dimension. We present a new construction of an extractor which works for algebraic sets defined by polynomials over GF(2) of substantially higher degree than the current state-of-the-art construction. We also exactly determine the GF(2)-polynomial degree of the recursive Fourier sampling problem and use this to provide new partial results towards a circuit lower bound for this problem. Finally, we answer a question concerning VC dimension, interpolation degree and the Hilbert function.\",\"PeriodicalId\":414001,\"journal\":{\"name\":\"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCS.2016.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2016.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

在本文中,我们应用代数几何的工具来证明关于代数集的提取器、递归傅立叶采样问题和VC维的新结果。我们提出了一种新的提取器结构,它适用于由GF(2)上的多项式定义的代数集,其程度比目前最先进的结构高得多。我们还精确地确定了递归傅里叶采样问题的GF(2)-多项式次,并利用它为该问题的电路下界提供了新的部分结果。最后,我们回答了一个关于VC维、插值度和Hilbert函数的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Hilbert Function, Algebraic Extractors, and Recursive Fourier Sampling
In this paper, we apply tools from algebraic geometry to prove new results concerning extractors for algebraic sets, the recursive Fourier sampling problem, and VC dimension. We present a new construction of an extractor which works for algebraic sets defined by polynomials over GF(2) of substantially higher degree than the current state-of-the-art construction. We also exactly determine the GF(2)-polynomial degree of the recursive Fourier sampling problem and use this to provide new partial results towards a circuit lower bound for this problem. Finally, we answer a question concerning VC dimension, interpolation degree and the Hilbert function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信