基于BERT融合多注意的方面级情感分析

Jian-qiong Xiao, Xingxian Luo
{"title":"基于BERT融合多注意的方面级情感分析","authors":"Jian-qiong Xiao, Xingxian Luo","doi":"10.1109/IHMSC55436.2022.00016","DOIUrl":null,"url":null,"abstract":"In view of the fact that the existing aspect-level sentiment analysis (ABSA) model cannot effectively distinguish the importance of aspect words and words in the text, and lacks the utilization of the overall interaction between aspect words and text, an aspect-level approach based on BERT combined with multi-attention is proposed. The sentiment analysis model captures the interaction and correlation between aspect words and the overall text sentence through the text and aspect word interactive attention mechanism, thereby improving the accuracy of ABSA. Comparative experiments are carried out on the restaurant and laptop datasets of the Semeval2014 evaluation task. The experimental results show that the model proposed in this paper achieves good classification results in the aspect-level sentiment analysis task for short text reviews. This method provides a new idea for ABSA for review texts.","PeriodicalId":447862,"journal":{"name":"2022 14th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Aspect-level sentiment analysis based on BERT fusion multi-attention\",\"authors\":\"Jian-qiong Xiao, Xingxian Luo\",\"doi\":\"10.1109/IHMSC55436.2022.00016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In view of the fact that the existing aspect-level sentiment analysis (ABSA) model cannot effectively distinguish the importance of aspect words and words in the text, and lacks the utilization of the overall interaction between aspect words and text, an aspect-level approach based on BERT combined with multi-attention is proposed. The sentiment analysis model captures the interaction and correlation between aspect words and the overall text sentence through the text and aspect word interactive attention mechanism, thereby improving the accuracy of ABSA. Comparative experiments are carried out on the restaurant and laptop datasets of the Semeval2014 evaluation task. The experimental results show that the model proposed in this paper achieves good classification results in the aspect-level sentiment analysis task for short text reviews. This method provides a new idea for ABSA for review texts.\",\"PeriodicalId\":447862,\"journal\":{\"name\":\"2022 14th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 14th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IHMSC55436.2022.00016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IHMSC55436.2022.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对现有的方面级情感分析(ABSA)模型不能有效区分方面词与文本中词语的重要性,缺乏对方面词与文本整体交互作用的利用的问题,提出了一种基于BERT的结合多注意的方面级情感分析方法。情感分析模型通过文本与方面词的交互注意机制,捕捉方面词与整个文本句子之间的相互作用和相关性,从而提高ABSA的准确性。在Semeval2014评估任务的餐厅和笔记本电脑数据集上进行了对比实验。实验结果表明,本文提出的模型在短文本评论的方面级情感分析任务中取得了较好的分类效果。该方法为复习文本的ABSA提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aspect-level sentiment analysis based on BERT fusion multi-attention
In view of the fact that the existing aspect-level sentiment analysis (ABSA) model cannot effectively distinguish the importance of aspect words and words in the text, and lacks the utilization of the overall interaction between aspect words and text, an aspect-level approach based on BERT combined with multi-attention is proposed. The sentiment analysis model captures the interaction and correlation between aspect words and the overall text sentence through the text and aspect word interactive attention mechanism, thereby improving the accuracy of ABSA. Comparative experiments are carried out on the restaurant and laptop datasets of the Semeval2014 evaluation task. The experimental results show that the model proposed in this paper achieves good classification results in the aspect-level sentiment analysis task for short text reviews. This method provides a new idea for ABSA for review texts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信