Ibtissem Cherfa, Anissa Zergaïnoh-Mokraoui, A. Mekhmoukh, K. Mokrani
{"title":"基于粒子群优化的自适应正则核模糊c均值聚类算法用于医学图像分割","authors":"Ibtissem Cherfa, Anissa Zergaïnoh-Mokraoui, A. Mekhmoukh, K. Mokrani","doi":"10.23919/spa50552.2020.9241242","DOIUrl":null,"url":null,"abstract":"This paper is concerned with Magnetic Resonance (MR) brain image segmentation using Adaptively Regularized Kernel-Based Fuzzy C-Means (ARKFCM) clustering algorithm. However this algorithm is sensitive to the random initialization of the clusters’ centers and moreover its optimal solution can be trapped into a local rather than a global solution. To overcome these drawbacks, this paper proposes the Particle Swarm Optimization (PSO) strategy to compute the clusters’ centroids instead of using directly the derived analytic expression of the centroids given by the ARKFCM algorithm. Experimental results, carried out on MR brain images from the BrainWeb database, show that the revisited ARKFCM algorithm improves the performance of its original version.","PeriodicalId":157578,"journal":{"name":"2020 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Adaptively Regularized Kernel-Based Fuzzy C-Means Clustering Algorithm Using Particle Swarm Optimization for Medical Image Segmentation\",\"authors\":\"Ibtissem Cherfa, Anissa Zergaïnoh-Mokraoui, A. Mekhmoukh, K. Mokrani\",\"doi\":\"10.23919/spa50552.2020.9241242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with Magnetic Resonance (MR) brain image segmentation using Adaptively Regularized Kernel-Based Fuzzy C-Means (ARKFCM) clustering algorithm. However this algorithm is sensitive to the random initialization of the clusters’ centers and moreover its optimal solution can be trapped into a local rather than a global solution. To overcome these drawbacks, this paper proposes the Particle Swarm Optimization (PSO) strategy to compute the clusters’ centroids instead of using directly the derived analytic expression of the centroids given by the ARKFCM algorithm. Experimental results, carried out on MR brain images from the BrainWeb database, show that the revisited ARKFCM algorithm improves the performance of its original version.\",\"PeriodicalId\":157578,\"journal\":{\"name\":\"2020 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/spa50552.2020.9241242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/spa50552.2020.9241242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptively Regularized Kernel-Based Fuzzy C-Means Clustering Algorithm Using Particle Swarm Optimization for Medical Image Segmentation
This paper is concerned with Magnetic Resonance (MR) brain image segmentation using Adaptively Regularized Kernel-Based Fuzzy C-Means (ARKFCM) clustering algorithm. However this algorithm is sensitive to the random initialization of the clusters’ centers and moreover its optimal solution can be trapped into a local rather than a global solution. To overcome these drawbacks, this paper proposes the Particle Swarm Optimization (PSO) strategy to compute the clusters’ centroids instead of using directly the derived analytic expression of the centroids given by the ARKFCM algorithm. Experimental results, carried out on MR brain images from the BrainWeb database, show that the revisited ARKFCM algorithm improves the performance of its original version.