基于GPT的中文问答系统

Shuai Liu, Xiaojun Huang
{"title":"基于GPT的中文问答系统","authors":"Shuai Liu, Xiaojun Huang","doi":"10.1109/ICSESS47205.2019.9040807","DOIUrl":null,"url":null,"abstract":"The Chinese question-answering system needs to select the most appropriate answer from the answer library for user according to the given question on the natural language form. Previous question-answering systems required modeling for specific task characteristics and designing multiple modules. This paper first proposes to use the Generative Pre-trained Transformer (GPT) to implement the Chinese question-answering system. To optimize and improve the model, this Chinese model pays more attention to the contextual content and semantic characteristics, and we designed a new method to train this model. This model reduces the number of modules in the question-answering system. This paper evaluates the model on the Document-Based Chinese Question and Answer (DBQA) dataset and achieves a 2.5% improvement in MRR/MAP over the latest lattice convolutional neural networks (Lattice CNNs). (Abstract)","PeriodicalId":203944,"journal":{"name":"2019 IEEE 10th International Conference on Software Engineering and Service Science (ICSESS)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Chinese Question Answering System based on GPT\",\"authors\":\"Shuai Liu, Xiaojun Huang\",\"doi\":\"10.1109/ICSESS47205.2019.9040807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Chinese question-answering system needs to select the most appropriate answer from the answer library for user according to the given question on the natural language form. Previous question-answering systems required modeling for specific task characteristics and designing multiple modules. This paper first proposes to use the Generative Pre-trained Transformer (GPT) to implement the Chinese question-answering system. To optimize and improve the model, this Chinese model pays more attention to the contextual content and semantic characteristics, and we designed a new method to train this model. This model reduces the number of modules in the question-answering system. This paper evaluates the model on the Document-Based Chinese Question and Answer (DBQA) dataset and achieves a 2.5% improvement in MRR/MAP over the latest lattice convolutional neural networks (Lattice CNNs). (Abstract)\",\"PeriodicalId\":203944,\"journal\":{\"name\":\"2019 IEEE 10th International Conference on Software Engineering and Service Science (ICSESS)\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 10th International Conference on Software Engineering and Service Science (ICSESS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSESS47205.2019.9040807\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 10th International Conference on Software Engineering and Service Science (ICSESS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSESS47205.2019.9040807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

中文问答系统需要根据给定的自然语言形式的问题,从答案库中选择最适合用户的答案。以前的问答系统需要对特定的任务特征进行建模,并设计多个模块。本文首先提出使用生成式预训练转换器(GPT)实现中文问答系统。为了对模型进行优化和改进,该中文模型更加关注上下文内容和语义特征,并设计了一种新的方法来训练该模型。该模型减少了问答系统中模块的数量。本文在基于文档的中文问答(DBQA)数据集上对该模型进行了评估,并在MRR/MAP方面比最新的lattice convolutional neural networks (lattice cnn)提高了2.5%。(抽象)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Chinese Question Answering System based on GPT
The Chinese question-answering system needs to select the most appropriate answer from the answer library for user according to the given question on the natural language form. Previous question-answering systems required modeling for specific task characteristics and designing multiple modules. This paper first proposes to use the Generative Pre-trained Transformer (GPT) to implement the Chinese question-answering system. To optimize and improve the model, this Chinese model pays more attention to the contextual content and semantic characteristics, and we designed a new method to train this model. This model reduces the number of modules in the question-answering system. This paper evaluates the model on the Document-Based Chinese Question and Answer (DBQA) dataset and achieves a 2.5% improvement in MRR/MAP over the latest lattice convolutional neural networks (Lattice CNNs). (Abstract)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信