基于多模态特征的数字电视系统推荐方法

R. Sousa, F. Ramos, Antonio Alexandre Moura Costa, Giovanni Calheiros, H. Almeida, A. Perkusich, A. F. Martins
{"title":"基于多模态特征的数字电视系统推荐方法","authors":"R. Sousa, F. Ramos, Antonio Alexandre Moura Costa, Giovanni Calheiros, H. Almeida, A. Perkusich, A. F. Martins","doi":"10.1145/2554850.2555154","DOIUrl":null,"url":null,"abstract":"Digital TV content providers are becoming widespread, with hundreds of programs available each day. The information overload makes difficult for the user to find programs of interest. To help the user, Recommendation Systems (RS) are a popular path. However, applying RS to some environments is not easy, either due to the lack or insufficiency of data to create accurate recommendations. In Digital TV domain, the main information available to make recommendations is the Electronic Program Guide (EPG) that is limited, containing only reduced textual data, making difficult to get an accurate recommendation using standard techniques. In this work we introduce a multimodal approach to recommend Digital TV programs, combining EPG text and visual information. We experimentally demonstrated that using multimodal features improved accuracy when compared with RS standard approaches.","PeriodicalId":285655,"journal":{"name":"Proceedings of the 29th Annual ACM Symposium on Applied Computing","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A recommendation approach for digital TV systems based on multimodal features\",\"authors\":\"R. Sousa, F. Ramos, Antonio Alexandre Moura Costa, Giovanni Calheiros, H. Almeida, A. Perkusich, A. F. Martins\",\"doi\":\"10.1145/2554850.2555154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital TV content providers are becoming widespread, with hundreds of programs available each day. The information overload makes difficult for the user to find programs of interest. To help the user, Recommendation Systems (RS) are a popular path. However, applying RS to some environments is not easy, either due to the lack or insufficiency of data to create accurate recommendations. In Digital TV domain, the main information available to make recommendations is the Electronic Program Guide (EPG) that is limited, containing only reduced textual data, making difficult to get an accurate recommendation using standard techniques. In this work we introduce a multimodal approach to recommend Digital TV programs, combining EPG text and visual information. We experimentally demonstrated that using multimodal features improved accuracy when compared with RS standard approaches.\",\"PeriodicalId\":285655,\"journal\":{\"name\":\"Proceedings of the 29th Annual ACM Symposium on Applied Computing\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 29th Annual ACM Symposium on Applied Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2554850.2555154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th Annual ACM Symposium on Applied Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2554850.2555154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

数字电视内容提供商正变得越来越普遍,每天有数百个节目可供选择。信息过载使得用户很难找到感兴趣的节目。为了帮助用户,推荐系统(RS)是一种流行的方法。然而,将RS应用于某些环境并不容易,这可能是由于缺乏或不足的数据来创建准确的建议。在数字电视领域,可用于推荐的主要信息是电子节目指南(Electronic Program Guide, EPG),但其内容有限,仅包含精简的文本数据,难以使用标准技术获得准确的推荐。在这项工作中,我们介绍了一种结合EPG文本和视觉信息的多模式数字电视节目推荐方法。我们通过实验证明,与RS标准方法相比,使用多模态特征可以提高精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A recommendation approach for digital TV systems based on multimodal features
Digital TV content providers are becoming widespread, with hundreds of programs available each day. The information overload makes difficult for the user to find programs of interest. To help the user, Recommendation Systems (RS) are a popular path. However, applying RS to some environments is not easy, either due to the lack or insufficiency of data to create accurate recommendations. In Digital TV domain, the main information available to make recommendations is the Electronic Program Guide (EPG) that is limited, containing only reduced textual data, making difficult to get an accurate recommendation using standard techniques. In this work we introduce a multimodal approach to recommend Digital TV programs, combining EPG text and visual information. We experimentally demonstrated that using multimodal features improved accuracy when compared with RS standard approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信