基于DAREKF的锂电池荷电状态联合估计

Kun-ye Zhou, Chunyang Zhang, Jiaqi He
{"title":"基于DAREKF的锂电池荷电状态联合估计","authors":"Kun-ye Zhou, Chunyang Zhang, Jiaqi He","doi":"10.1117/12.2680030","DOIUrl":null,"url":null,"abstract":"The power source of electric vehicle is lithium-ion battery. Due to the influence of aging degree, the driver's estimation error of lithium-ion battery power is caused, so it is very practical to accurately estimate its state of charge. In order to solve the problems of Gaussian white noise and poor robustness of adaptive extended Kalman filter algorithm, this paper adopts double adaptive robust extended Kalman filter algorithm for online joint estimation of model parameters and SOC. The simulation results show that, compared with AEKF estimation, the maximum absolute error, mean absolute error and root mean square error of battery state estimation can be reduced by 1.14%, 0.49% and 0.62% respectively.","PeriodicalId":201466,"journal":{"name":"Symposium on Advances in Electrical, Electronics and Computer Engineering","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Joint estimation of SOC for lithium batteries based on DAREKF\",\"authors\":\"Kun-ye Zhou, Chunyang Zhang, Jiaqi He\",\"doi\":\"10.1117/12.2680030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The power source of electric vehicle is lithium-ion battery. Due to the influence of aging degree, the driver's estimation error of lithium-ion battery power is caused, so it is very practical to accurately estimate its state of charge. In order to solve the problems of Gaussian white noise and poor robustness of adaptive extended Kalman filter algorithm, this paper adopts double adaptive robust extended Kalman filter algorithm for online joint estimation of model parameters and SOC. The simulation results show that, compared with AEKF estimation, the maximum absolute error, mean absolute error and root mean square error of battery state estimation can be reduced by 1.14%, 0.49% and 0.62% respectively.\",\"PeriodicalId\":201466,\"journal\":{\"name\":\"Symposium on Advances in Electrical, Electronics and Computer Engineering\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symposium on Advances in Electrical, Electronics and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2680030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Advances in Electrical, Electronics and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2680030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

电动汽车的动力源是锂离子电池。由于老化程度的影响,会造成驾驶员对锂离子电池电量的估计误差,因此准确估计锂离子电池的充电状态是非常实用的。为了解决自适应扩展卡尔曼滤波算法存在高斯白噪声和鲁棒性差的问题,本文采用双自适应鲁棒扩展卡尔曼滤波算法对模型参数和SOC进行在线联合估计。仿真结果表明,与AEKF估计相比,电池状态估计的最大绝对误差、平均绝对误差和均方根误差分别减小了1.14%、0.49%和0.62%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint estimation of SOC for lithium batteries based on DAREKF
The power source of electric vehicle is lithium-ion battery. Due to the influence of aging degree, the driver's estimation error of lithium-ion battery power is caused, so it is very practical to accurately estimate its state of charge. In order to solve the problems of Gaussian white noise and poor robustness of adaptive extended Kalman filter algorithm, this paper adopts double adaptive robust extended Kalman filter algorithm for online joint estimation of model parameters and SOC. The simulation results show that, compared with AEKF estimation, the maximum absolute error, mean absolute error and root mean square error of battery state estimation can be reduced by 1.14%, 0.49% and 0.62% respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信