分组可变常权码

O. Moreno, J. Ortiz-Ubarri
{"title":"分组可变常权码","authors":"O. Moreno, J. Ortiz-Ubarri","doi":"10.1109/CIG.2010.5592644","DOIUrl":null,"url":null,"abstract":"Improvements to the Johnson Bound for Optical Orthogonal Codes have been used to prove the optimality of double-periodic arrays with row and column length relatively prime. In our work we produce families of double-periodic arrays where the row and column length are not relatively prime. In this work we introduce the concept of group permutable constant weight codes and non-binary group permutable constant weight codes. We present improvements to the Johnson Bound to bound the cardinality of the families of double-periodic arrays whose row and column length are not relatively prime. We present some families of group permutable constant weight codes and prove the optimality of these families.","PeriodicalId":354925,"journal":{"name":"2010 IEEE Information Theory Workshop","volume":"45 33","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Group permutable constant weight codes\",\"authors\":\"O. Moreno, J. Ortiz-Ubarri\",\"doi\":\"10.1109/CIG.2010.5592644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Improvements to the Johnson Bound for Optical Orthogonal Codes have been used to prove the optimality of double-periodic arrays with row and column length relatively prime. In our work we produce families of double-periodic arrays where the row and column length are not relatively prime. In this work we introduce the concept of group permutable constant weight codes and non-binary group permutable constant weight codes. We present improvements to the Johnson Bound to bound the cardinality of the families of double-periodic arrays whose row and column length are not relatively prime. We present some families of group permutable constant weight codes and prove the optimality of these families.\",\"PeriodicalId\":354925,\"journal\":{\"name\":\"2010 IEEE Information Theory Workshop\",\"volume\":\"45 33\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Information Theory Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIG.2010.5592644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Information Theory Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2010.5592644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

利用对光正交码Johnson界的改进,证明了行、列长度相对素数的双周期阵列的最优性。在我们的工作中,我们得到了行和列长度不是相对素数的双周期数组族。本文引入了群可变常数权码和非二进制群可变常数权码的概念。给出了对Johnson界的改进,用于约束行、列长度非相对素数的双周期数组族的基数。给出了群置换常权码的一些族,并证明了这些族的最优性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Group permutable constant weight codes
Improvements to the Johnson Bound for Optical Orthogonal Codes have been used to prove the optimality of double-periodic arrays with row and column length relatively prime. In our work we produce families of double-periodic arrays where the row and column length are not relatively prime. In this work we introduce the concept of group permutable constant weight codes and non-binary group permutable constant weight codes. We present improvements to the Johnson Bound to bound the cardinality of the families of double-periodic arrays whose row and column length are not relatively prime. We present some families of group permutable constant weight codes and prove the optimality of these families.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信