奈飞公司股票市场价格预测模型

P. Patwal, Amit Kumar Srivastava
{"title":"奈飞公司股票市场价格预测模型","authors":"P. Patwal, Amit Kumar Srivastava","doi":"10.1109/ICAIA57370.2023.10169347","DOIUrl":null,"url":null,"abstract":"Accurate prediction of stock market price is highly challenging. This paper presents a proposed model for prediction of stock market price of Netflix. We have considered a five–year data set (April, 2017 – April, 2022) of Netflix. An Exploratory Data Analysis (EDA) of Netflix’s stock price data for predicting its stock market prices using time series is done. The implementation of the model is done using Python language. We imported five-years data and applied several techniques: importing libraries, calculating stock return, line plot, plot all, plot return year wise, plot histogram, plot kernel density, plot box plot, differencing method, resample daily to monthly data etc. EDA proved that using time series technique achieved better results in prediction of stock price and visualizing.","PeriodicalId":196526,"journal":{"name":"2023 International Conference on Artificial Intelligence and Applications (ICAIA) Alliance Technology Conference (ATCON-1)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proposed Model for Prediction of Stock Market Price of Netflix\",\"authors\":\"P. Patwal, Amit Kumar Srivastava\",\"doi\":\"10.1109/ICAIA57370.2023.10169347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate prediction of stock market price is highly challenging. This paper presents a proposed model for prediction of stock market price of Netflix. We have considered a five–year data set (April, 2017 – April, 2022) of Netflix. An Exploratory Data Analysis (EDA) of Netflix’s stock price data for predicting its stock market prices using time series is done. The implementation of the model is done using Python language. We imported five-years data and applied several techniques: importing libraries, calculating stock return, line plot, plot all, plot return year wise, plot histogram, plot kernel density, plot box plot, differencing method, resample daily to monthly data etc. EDA proved that using time series technique achieved better results in prediction of stock price and visualizing.\",\"PeriodicalId\":196526,\"journal\":{\"name\":\"2023 International Conference on Artificial Intelligence and Applications (ICAIA) Alliance Technology Conference (ATCON-1)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Artificial Intelligence and Applications (ICAIA) Alliance Technology Conference (ATCON-1)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAIA57370.2023.10169347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Artificial Intelligence and Applications (ICAIA) Alliance Technology Conference (ATCON-1)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIA57370.2023.10169347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

股票市场价格的准确预测极具挑战性。本文提出了一个预测Netflix股票市场价格的模型。我们考虑了Netflix的五年数据集(2017年4月至2022年4月)。本文对Netflix公司的股价数据进行了探索性数据分析(EDA),利用时间序列预测Netflix公司的股票市场价格。模型的实现使用Python语言完成。我们导入了5年的数据,并应用了几种技术:导入库、计算股票收益、线形图、全图、年线图、直方图、核密度图、箱形图、差分法、逐日至逐月抽样等。EDA证明,时间序列技术在股票价格预测和可视化方面取得了较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proposed Model for Prediction of Stock Market Price of Netflix
Accurate prediction of stock market price is highly challenging. This paper presents a proposed model for prediction of stock market price of Netflix. We have considered a five–year data set (April, 2017 – April, 2022) of Netflix. An Exploratory Data Analysis (EDA) of Netflix’s stock price data for predicting its stock market prices using time series is done. The implementation of the model is done using Python language. We imported five-years data and applied several techniques: importing libraries, calculating stock return, line plot, plot all, plot return year wise, plot histogram, plot kernel density, plot box plot, differencing method, resample daily to monthly data etc. EDA proved that using time series technique achieved better results in prediction of stock price and visualizing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信