Dirichlet和Favard核导数关于N次谐波选择的最小范数的阶估计

É. M. Galeev
{"title":"Dirichlet和Favard核导数关于N次谐波选择的最小范数的阶估计","authors":"É. M. Galeev","doi":"10.1070/SM1992V072N02ABEH002150","DOIUrl":null,"url":null,"abstract":"The Dirichlet kernel is defined for periodic functions of several variables; it consists of harmonics and has minimal order of the norm with respect to the choice of harmonics of the mixed Weyl derivative in the space . A similar problem on the minimal order of the norm is solved for the Favard kernel. Both problems generalize to the case of several derivatives.","PeriodicalId":208776,"journal":{"name":"Mathematics of The Ussr-sbornik","volume":"241 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Order Estimates of Smallest Norms, with Respect to the Choice of N Harmonics, of Derivatives of the Dirichlet and Favard Kernels\",\"authors\":\"É. M. Galeev\",\"doi\":\"10.1070/SM1992V072N02ABEH002150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Dirichlet kernel is defined for periodic functions of several variables; it consists of harmonics and has minimal order of the norm with respect to the choice of harmonics of the mixed Weyl derivative in the space . A similar problem on the minimal order of the norm is solved for the Favard kernel. Both problems generalize to the case of several derivatives.\",\"PeriodicalId\":208776,\"journal\":{\"name\":\"Mathematics of The Ussr-sbornik\",\"volume\":\"241 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of The Ussr-sbornik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1070/SM1992V072N02ABEH002150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of The Ussr-sbornik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/SM1992V072N02ABEH002150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

定义了多变量周期函数的Dirichlet核;它由谐波组成,并且相对于空间中混合Weyl导数的谐波的选择,范数的阶数最小。在范数的最小阶上解决了Favard核的类似问题。这两个问题都可以推广到多个导数的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Order Estimates of Smallest Norms, with Respect to the Choice of N Harmonics, of Derivatives of the Dirichlet and Favard Kernels
The Dirichlet kernel is defined for periodic functions of several variables; it consists of harmonics and has minimal order of the norm with respect to the choice of harmonics of the mixed Weyl derivative in the space . A similar problem on the minimal order of the norm is solved for the Favard kernel. Both problems generalize to the case of several derivatives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信