基于YOLO和浅CNN模型的表情识别

B. S, H. K, S. M
{"title":"基于YOLO和浅CNN模型的表情识别","authors":"B. S, H. K, S. M","doi":"10.1109/STCR55312.2022.10009519","DOIUrl":null,"url":null,"abstract":"In this digital era, identifying human facial expressions and responding accordingly is an emerging need. On the other hand, similar data can be used for surveillance activities and relative crime detection. Human Facial Expression Recognition (HFER) based on human face expression variations in real-time is proposed in this paper. Here two CNN- models are cascaded to produce the facial expression recognition output. YOLO V5 is used for people detection and custom trained CNN model is used for expression recognition. The suggested model provides better accuracy of 95.57% for seven different facial expressions than the existing models.","PeriodicalId":338691,"journal":{"name":"2022 Smart Technologies, Communication and Robotics (STCR)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expression Recognition using YOLO and Shallow CNN Model\",\"authors\":\"B. S, H. K, S. M\",\"doi\":\"10.1109/STCR55312.2022.10009519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this digital era, identifying human facial expressions and responding accordingly is an emerging need. On the other hand, similar data can be used for surveillance activities and relative crime detection. Human Facial Expression Recognition (HFER) based on human face expression variations in real-time is proposed in this paper. Here two CNN- models are cascaded to produce the facial expression recognition output. YOLO V5 is used for people detection and custom trained CNN model is used for expression recognition. The suggested model provides better accuracy of 95.57% for seven different facial expressions than the existing models.\",\"PeriodicalId\":338691,\"journal\":{\"name\":\"2022 Smart Technologies, Communication and Robotics (STCR)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Smart Technologies, Communication and Robotics (STCR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STCR55312.2022.10009519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Smart Technologies, Communication and Robotics (STCR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STCR55312.2022.10009519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这个数字时代,识别人类的面部表情并做出相应的反应是一种新兴的需求。另一方面,类似的数据可以用于监视活动和相关的犯罪侦查。提出了一种基于人脸表情实时变化的人脸表情识别方法。在这里,两个CNN模型被级联以产生面部表情识别输出。使用YOLO V5进行人物检测,使用自定义训练CNN模型进行表情识别。该模型对7种不同面部表情的识别准确率达到95.57%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Expression Recognition using YOLO and Shallow CNN Model
In this digital era, identifying human facial expressions and responding accordingly is an emerging need. On the other hand, similar data can be used for surveillance activities and relative crime detection. Human Facial Expression Recognition (HFER) based on human face expression variations in real-time is proposed in this paper. Here two CNN- models are cascaded to produce the facial expression recognition output. YOLO V5 is used for people detection and custom trained CNN model is used for expression recognition. The suggested model provides better accuracy of 95.57% for seven different facial expressions than the existing models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信