{"title":"一类参数树聚类方法","authors":"F. Glover, Yang Wang","doi":"10.5772/INTECHOPEN.76406","DOIUrl":null,"url":null,"abstract":"We introduce a class of tree-based clustering methods based on a single parameter W and show how to generate the full collection of cluster sets C(W), without duplication, by varying W according to conditions identified during the algorithm’s execution. The number of clusters within C(W) for a given W is determined automatically, using a graph representation in which cluster elements are represented by nodes and their pairwise con- nections are represented by edges. We identify features of the clusters produced which lead to special procedures to accelerate the computation. Finally, we introduce a related node-based variant of the algorithm based on a parameter Y which can be used to generate clusters with complementary features, and a method that combines both variants based on a parameter Z and a weight that determines the contribution of each variant.","PeriodicalId":236959,"journal":{"name":"Recent Applications in Data Clustering","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Class of Parametric Tree-Based Clustering Methods\",\"authors\":\"F. Glover, Yang Wang\",\"doi\":\"10.5772/INTECHOPEN.76406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a class of tree-based clustering methods based on a single parameter W and show how to generate the full collection of cluster sets C(W), without duplication, by varying W according to conditions identified during the algorithm’s execution. The number of clusters within C(W) for a given W is determined automatically, using a graph representation in which cluster elements are represented by nodes and their pairwise con- nections are represented by edges. We identify features of the clusters produced which lead to special procedures to accelerate the computation. Finally, we introduce a related node-based variant of the algorithm based on a parameter Y which can be used to generate clusters with complementary features, and a method that combines both variants based on a parameter Z and a weight that determines the contribution of each variant.\",\"PeriodicalId\":236959,\"journal\":{\"name\":\"Recent Applications in Data Clustering\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Applications in Data Clustering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.76406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Applications in Data Clustering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.76406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Class of Parametric Tree-Based Clustering Methods
We introduce a class of tree-based clustering methods based on a single parameter W and show how to generate the full collection of cluster sets C(W), without duplication, by varying W according to conditions identified during the algorithm’s execution. The number of clusters within C(W) for a given W is determined automatically, using a graph representation in which cluster elements are represented by nodes and their pairwise con- nections are represented by edges. We identify features of the clusters produced which lead to special procedures to accelerate the computation. Finally, we introduce a related node-based variant of the algorithm based on a parameter Y which can be used to generate clusters with complementary features, and a method that combines both variants based on a parameter Z and a weight that determines the contribution of each variant.