一类参数树聚类方法

F. Glover, Yang Wang
{"title":"一类参数树聚类方法","authors":"F. Glover, Yang Wang","doi":"10.5772/INTECHOPEN.76406","DOIUrl":null,"url":null,"abstract":"We introduce a class of tree-based clustering methods based on a single parameter W and show how to generate the full collection of cluster sets C(W), without duplication, by varying W according to conditions identified during the algorithm’s execution. The number of clusters within C(W) for a given W is determined automatically, using a graph representation in which cluster elements are represented by nodes and their pairwise con- nections are represented by edges. We identify features of the clusters produced which lead to special procedures to accelerate the computation. Finally, we introduce a related node-based variant of the algorithm based on a parameter Y which can be used to generate clusters with complementary features, and a method that combines both variants based on a parameter Z and a weight that determines the contribution of each variant.","PeriodicalId":236959,"journal":{"name":"Recent Applications in Data Clustering","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Class of Parametric Tree-Based Clustering Methods\",\"authors\":\"F. Glover, Yang Wang\",\"doi\":\"10.5772/INTECHOPEN.76406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a class of tree-based clustering methods based on a single parameter W and show how to generate the full collection of cluster sets C(W), without duplication, by varying W according to conditions identified during the algorithm’s execution. The number of clusters within C(W) for a given W is determined automatically, using a graph representation in which cluster elements are represented by nodes and their pairwise con- nections are represented by edges. We identify features of the clusters produced which lead to special procedures to accelerate the computation. Finally, we introduce a related node-based variant of the algorithm based on a parameter Y which can be used to generate clusters with complementary features, and a method that combines both variants based on a parameter Z and a weight that determines the contribution of each variant.\",\"PeriodicalId\":236959,\"journal\":{\"name\":\"Recent Applications in Data Clustering\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Applications in Data Clustering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.76406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Applications in Data Clustering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.76406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了一类基于单个参数W的基于树的聚类方法,并展示了如何根据算法执行期间确定的条件改变W,从而生成无重复的聚类集C(W)的完整集合。对于给定的W, C(W)内的聚类数量是自动确定的,使用图表示,其中聚类元素由节点表示,它们的成对连接由边表示。我们确定了产生的集群的特征,这些特征导致了特殊的程序来加速计算。最后,我们介绍了一种基于参数Y的相关的基于节点的算法变体,该参数Y可用于生成具有互补特征的聚类,以及一种基于参数Z和确定每个变体贡献的权重组合这两个变体的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Class of Parametric Tree-Based Clustering Methods
We introduce a class of tree-based clustering methods based on a single parameter W and show how to generate the full collection of cluster sets C(W), without duplication, by varying W according to conditions identified during the algorithm’s execution. The number of clusters within C(W) for a given W is determined automatically, using a graph representation in which cluster elements are represented by nodes and their pairwise con- nections are represented by edges. We identify features of the clusters produced which lead to special procedures to accelerate the computation. Finally, we introduce a related node-based variant of the algorithm based on a parameter Y which can be used to generate clusters with complementary features, and a method that combines both variants based on a parameter Z and a weight that determines the contribution of each variant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信