通过对话行为将话语语境融入口语翻译中

V. Sridhar, Shrikanth S. Narayanan, S. Bangalore
{"title":"通过对话行为将话语语境融入口语翻译中","authors":"V. Sridhar, Shrikanth S. Narayanan, S. Bangalore","doi":"10.1109/SLT.2008.4777892","DOIUrl":null,"url":null,"abstract":"Current statistical speech translation approaches predominantly rely on just text transcripts and are limited in their use of rich contextual information such as prosody and discourse function. In this paper, we explore the role of discourse context characterized through dialog acts (DAs) in statistical translation. We present a bag-of-words (BOW) model that exploits DA tags in translation and contrast it with a phrase table interpolation approach presented in previous work. In addition to producing interpretable DA-annotated target language translations through our framework, we also obtain consistent improvements in terms of automatic evaluation metrics such as lexical selection accuracy and BLEU score using both the models. We also analyze the performance improvements per DA tag. Our experiments indicate that questions, acknowledgments, agreements and appreciations contribute to more improvement in comparison to statements.","PeriodicalId":186876,"journal":{"name":"2008 IEEE Spoken Language Technology Workshop","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Incorporating discourse context in spoken language translation through dialog acts\",\"authors\":\"V. Sridhar, Shrikanth S. Narayanan, S. Bangalore\",\"doi\":\"10.1109/SLT.2008.4777892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current statistical speech translation approaches predominantly rely on just text transcripts and are limited in their use of rich contextual information such as prosody and discourse function. In this paper, we explore the role of discourse context characterized through dialog acts (DAs) in statistical translation. We present a bag-of-words (BOW) model that exploits DA tags in translation and contrast it with a phrase table interpolation approach presented in previous work. In addition to producing interpretable DA-annotated target language translations through our framework, we also obtain consistent improvements in terms of automatic evaluation metrics such as lexical selection accuracy and BLEU score using both the models. We also analyze the performance improvements per DA tag. Our experiments indicate that questions, acknowledgments, agreements and appreciations contribute to more improvement in comparison to statements.\",\"PeriodicalId\":186876,\"journal\":{\"name\":\"2008 IEEE Spoken Language Technology Workshop\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Spoken Language Technology Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2008.4777892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Spoken Language Technology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2008.4777892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

目前的统计语音翻译方法主要依赖于文本文本,在使用韵律和话语功能等丰富的上下文信息方面受到限制。本文探讨了以对话行为为特征的语篇语境在统计翻译中的作用。我们提出了一个词袋(BOW)模型,该模型利用翻译中的DA标签,并将其与先前工作中提出的短语表插值方法进行对比。除了通过我们的框架生成可解释的da注释的目标语言翻译外,我们还在使用这两个模型的自动评估指标(如词汇选择准确性和BLEU分数)方面获得了一致的改进。我们还分析了每个DA标签的性能改进。我们的实验表明,与陈述相比,问题、致谢、同意和赞赏有助于更大的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incorporating discourse context in spoken language translation through dialog acts
Current statistical speech translation approaches predominantly rely on just text transcripts and are limited in their use of rich contextual information such as prosody and discourse function. In this paper, we explore the role of discourse context characterized through dialog acts (DAs) in statistical translation. We present a bag-of-words (BOW) model that exploits DA tags in translation and contrast it with a phrase table interpolation approach presented in previous work. In addition to producing interpretable DA-annotated target language translations through our framework, we also obtain consistent improvements in terms of automatic evaluation metrics such as lexical selection accuracy and BLEU score using both the models. We also analyze the performance improvements per DA tag. Our experiments indicate that questions, acknowledgments, agreements and appreciations contribute to more improvement in comparison to statements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信