基于特征约简的支持向量机分层方法提高入侵检测精度

A. Nema, B. Tiwari, V. Tiwari
{"title":"基于特征约简的支持向量机分层方法提高入侵检测精度","authors":"A. Nema, B. Tiwari, V. Tiwari","doi":"10.1145/2909067.2909100","DOIUrl":null,"url":null,"abstract":"Digital information security is the field of information technology which deal with all about identification and protection of information. Whereas, identification of the threat of any Intrusion Detection System (IDS) in the most challenging phase. Threat detection become most promising because rest of the IDS system phase depends on the solely on \"what is identified\". In this view, a multilayered framework has been discussed which handles the underlying features for the identification of various attack (DoS, R2L, U2R, Probe). The experiments validates the use SVM with genetic approach is efficient.","PeriodicalId":371590,"journal":{"name":"Women In Research","volume":"178 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Improving Accuracy for Intrusion Detection through Layered Approach Using Support Vector Machine with Feature Reduction\",\"authors\":\"A. Nema, B. Tiwari, V. Tiwari\",\"doi\":\"10.1145/2909067.2909100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital information security is the field of information technology which deal with all about identification and protection of information. Whereas, identification of the threat of any Intrusion Detection System (IDS) in the most challenging phase. Threat detection become most promising because rest of the IDS system phase depends on the solely on \\\"what is identified\\\". In this view, a multilayered framework has been discussed which handles the underlying features for the identification of various attack (DoS, R2L, U2R, Probe). The experiments validates the use SVM with genetic approach is efficient.\",\"PeriodicalId\":371590,\"journal\":{\"name\":\"Women In Research\",\"volume\":\"178 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Women In Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2909067.2909100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Women In Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2909067.2909100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

数字信息安全是涉及信息识别和保护的信息技术领域。然而,识别入侵检测系统(IDS)的威胁是最具挑战性的阶段。威胁检测成为最有希望的,因为IDS系统阶段的其余部分完全取决于“识别什么”。在这个观点中,我们讨论了一个多层框架,它处理识别各种攻击(DoS, R2L, U2R, Probe)的底层特征。实验验证了支持向量机与遗传方法的结合是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Accuracy for Intrusion Detection through Layered Approach Using Support Vector Machine with Feature Reduction
Digital information security is the field of information technology which deal with all about identification and protection of information. Whereas, identification of the threat of any Intrusion Detection System (IDS) in the most challenging phase. Threat detection become most promising because rest of the IDS system phase depends on the solely on "what is identified". In this view, a multilayered framework has been discussed which handles the underlying features for the identification of various attack (DoS, R2L, U2R, Probe). The experiments validates the use SVM with genetic approach is efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信