聚砜/活性炭纳米纤维混合基质膜分离CO2/CH4

Z. Jamian, Muhammad Hanis Tajuddin, N. Yusof, F. Othman
{"title":"聚砜/活性炭纳米纤维混合基质膜分离CO2/CH4","authors":"Z. Jamian, Muhammad Hanis Tajuddin, N. Yusof, F. Othman","doi":"10.11113/AMST.V22N1.114","DOIUrl":null,"url":null,"abstract":"This study was performed primarily to investigate the effect of activated carbon nanofiber (ACNF) on carbon dioxide and methane separation performance of mixed matrix membrane (MMM). In this study, polysulfone (PSf)/ACNF mixed matrix membranes was fabricated using dry/wet inversion technique. The effect of PSf concentration and ACNF loading on the performance of mixed matrix membrane in terms of permeability and selectivity of CO2/CH4 gas separation was observed. The fabricated flat sheet mixed matrix membranes were characterized using Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM) analysis. From the SEM observations, it shows that sponge like structures images were observed upon the addition of ACNFs in the PSf/ACNF membranes was slowly decreased due to increasing weight percentage of ACNF. FT-IR result indicating the presence of carboxyl group in MMM at wavelength 1750 cm-1. Meanwhile, the MMMs were further tested to pure permeation test using pure CO2 and CH4 gas, the CO2 permeance improved and the selectivity of CO2/CH4 increased after the addition of ACNFs. ","PeriodicalId":326334,"journal":{"name":"Journal of Applied Membrane Science & Technology","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Polysulfone/Activated Carbon Nanofibers Mixed Matrix Membrane for CO2/CH4 Separation\",\"authors\":\"Z. Jamian, Muhammad Hanis Tajuddin, N. Yusof, F. Othman\",\"doi\":\"10.11113/AMST.V22N1.114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study was performed primarily to investigate the effect of activated carbon nanofiber (ACNF) on carbon dioxide and methane separation performance of mixed matrix membrane (MMM). In this study, polysulfone (PSf)/ACNF mixed matrix membranes was fabricated using dry/wet inversion technique. The effect of PSf concentration and ACNF loading on the performance of mixed matrix membrane in terms of permeability and selectivity of CO2/CH4 gas separation was observed. The fabricated flat sheet mixed matrix membranes were characterized using Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM) analysis. From the SEM observations, it shows that sponge like structures images were observed upon the addition of ACNFs in the PSf/ACNF membranes was slowly decreased due to increasing weight percentage of ACNF. FT-IR result indicating the presence of carboxyl group in MMM at wavelength 1750 cm-1. Meanwhile, the MMMs were further tested to pure permeation test using pure CO2 and CH4 gas, the CO2 permeance improved and the selectivity of CO2/CH4 increased after the addition of ACNFs. \",\"PeriodicalId\":326334,\"journal\":{\"name\":\"Journal of Applied Membrane Science & Technology\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Membrane Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11113/AMST.V22N1.114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Membrane Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/AMST.V22N1.114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究主要研究了活性炭纳米纤维(ACNF)对混合基质膜(MMM)分离二氧化碳和甲烷性能的影响。本研究采用干湿转化技术制备了聚砜/ACNF混合基质膜。考察了PSf浓度和ACNF负荷对混合基质膜的渗透性和CO2/CH4气体分离选择性的影响。利用傅里叶变换红外光谱(FT-IR)和扫描电子显微镜(SEM)对制备的平板混合基质膜进行了表征。SEM观察表明,随着ACNF的加入,PSf/ACNF膜的海绵样结构图像随着ACNF重量百分比的增加而缓慢下降。红外光谱结果表明,在波长1750 cm-1下,MMM中存在羧基。同时,采用纯CO2和纯CH4气体对MMMs进行了纯渗透试验,发现acfs的加入提高了MMMs对CO2的渗透率,提高了CO2/CH4的选择性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of Polysulfone/Activated Carbon Nanofibers Mixed Matrix Membrane for CO2/CH4 Separation
This study was performed primarily to investigate the effect of activated carbon nanofiber (ACNF) on carbon dioxide and methane separation performance of mixed matrix membrane (MMM). In this study, polysulfone (PSf)/ACNF mixed matrix membranes was fabricated using dry/wet inversion technique. The effect of PSf concentration and ACNF loading on the performance of mixed matrix membrane in terms of permeability and selectivity of CO2/CH4 gas separation was observed. The fabricated flat sheet mixed matrix membranes were characterized using Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM) analysis. From the SEM observations, it shows that sponge like structures images were observed upon the addition of ACNFs in the PSf/ACNF membranes was slowly decreased due to increasing weight percentage of ACNF. FT-IR result indicating the presence of carboxyl group in MMM at wavelength 1750 cm-1. Meanwhile, the MMMs were further tested to pure permeation test using pure CO2 and CH4 gas, the CO2 permeance improved and the selectivity of CO2/CH4 increased after the addition of ACNFs. 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信