Fangfang Zhou, Juncai Li, Wei Huang, Ying Zhao, Xiaoru Yuan, Xing Liang, Yang Shi
{"title":"高维数据中子空间聚类视觉探索的维数重建","authors":"Fangfang Zhou, Juncai Li, Wei Huang, Ying Zhao, Xiaoru Yuan, Xing Liang, Yang Shi","doi":"10.1109/PACIFICVIS.2016.7465260","DOIUrl":null,"url":null,"abstract":"Subspace-based analysis has increasingly become the preferred method for clustering high-dimensional data. A visually interactive exploration of subspaces and clusters is a cyclic process. Every meaningful discovery will motivate users to re-search subspaces that can provide improved clustering results and reveal the relationships among clusters that can hardly coexist in the original subspaces. However, the combination of dimensions from the original subspaces is not always effective in finding the expected subspaces. In this study, we present an approach that enables users to reconstruct new dimensions from the data projections of subspaces to preserve interesting cluster information. The reconstructed dimensions are included into an analytical workflow with the original dimensions to help users construct target-oriented subspaces which clearly display informative cluster structures. We also provide a visualization tool that assists users in the exploration of subspace clusters by utilizing dimension reconstruction. Several case studies on synthetic and real-world data sets have been performed to prove the effectiveness of our approach. Lastly, further evaluation of the approach has been conducted via expert reviews.","PeriodicalId":129600,"journal":{"name":"2016 IEEE Pacific Visualization Symposium (PacificVis)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Dimension reconstruction for visual exploration of subspace clusters in high-dimensional data\",\"authors\":\"Fangfang Zhou, Juncai Li, Wei Huang, Ying Zhao, Xiaoru Yuan, Xing Liang, Yang Shi\",\"doi\":\"10.1109/PACIFICVIS.2016.7465260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Subspace-based analysis has increasingly become the preferred method for clustering high-dimensional data. A visually interactive exploration of subspaces and clusters is a cyclic process. Every meaningful discovery will motivate users to re-search subspaces that can provide improved clustering results and reveal the relationships among clusters that can hardly coexist in the original subspaces. However, the combination of dimensions from the original subspaces is not always effective in finding the expected subspaces. In this study, we present an approach that enables users to reconstruct new dimensions from the data projections of subspaces to preserve interesting cluster information. The reconstructed dimensions are included into an analytical workflow with the original dimensions to help users construct target-oriented subspaces which clearly display informative cluster structures. We also provide a visualization tool that assists users in the exploration of subspace clusters by utilizing dimension reconstruction. Several case studies on synthetic and real-world data sets have been performed to prove the effectiveness of our approach. Lastly, further evaluation of the approach has been conducted via expert reviews.\",\"PeriodicalId\":129600,\"journal\":{\"name\":\"2016 IEEE Pacific Visualization Symposium (PacificVis)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Pacific Visualization Symposium (PacificVis)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACIFICVIS.2016.7465260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACIFICVIS.2016.7465260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dimension reconstruction for visual exploration of subspace clusters in high-dimensional data
Subspace-based analysis has increasingly become the preferred method for clustering high-dimensional data. A visually interactive exploration of subspaces and clusters is a cyclic process. Every meaningful discovery will motivate users to re-search subspaces that can provide improved clustering results and reveal the relationships among clusters that can hardly coexist in the original subspaces. However, the combination of dimensions from the original subspaces is not always effective in finding the expected subspaces. In this study, we present an approach that enables users to reconstruct new dimensions from the data projections of subspaces to preserve interesting cluster information. The reconstructed dimensions are included into an analytical workflow with the original dimensions to help users construct target-oriented subspaces which clearly display informative cluster structures. We also provide a visualization tool that assists users in the exploration of subspace clusters by utilizing dimension reconstruction. Several case studies on synthetic and real-world data sets have been performed to prove the effectiveness of our approach. Lastly, further evaluation of the approach has been conducted via expert reviews.